Domestic Overheating – an integrated approach from designer to occupant

William Wright
Building Research Establishment, Watford
william.wright@bre.co.uk
Introduction

- Need for guidance for designers, landlords and occupants
- Decisions early in the design process can have significant impact
 - Early communication between stakeholders to help avoid overheating problems later
- Window of opportunity to reduce overheating propensity at minimum cost
 - Otherwise, may lead to higher cost measures later or use of mechanical cooling
- Occupants are part of the solution
Integrated approach

– Mitigating overheating as a process from design, construction, to operation
 – **Benefits** occupant comfort, reduced risk, energy demand and carbon emissions

– Can consider overheating in the following ways:
 – **Designers** Features to design in, reducing gains, rejection passively, what behaviour to assume of the building occupants and key questions to ask
 – **Landlords** How operation and maintenance is undertaken, consider long term issues and changes to building and surroundings
 – **Occupants** How actions affect thermal environment, understanding of the building as a dynamic thing responding to environment and usage
Defining ‘overheating’

- Experience of overheating can be different for different occupants
 - Several metrics and precise definitions of criteria derived from statistics on people’s experience of overheating
- Any unwanted heat within a building affecting thermal comfort
 - Long lasting low level
 - Short high temperature events, heat waves
 - Night time – repercussions on health and mortality rates
- Most definitions describe risk of thermal discomfort in terms of indoor temperatures being too high – long term effects on health also important
Modelling overheating

- Building energy simulation models and thermal comfort based criteria
 - Accurate but time consuming, costly
 - Subject to judgement of the modeller – to be undertaken by experienced and qualified person
- SAP Appendix P
 - More general (whole building) definition derived from the domestic context
 - Risk levels - ‘Not significant’, ‘Slight’, ‘Medium’, and ‘High’
- Approach in this study
 - Modification of SAP Appendix P model to consider the problem in the round
 - Shorthand to reflect key decisions in design, management and operation processes
 - Not meant to catch every occurrence of overheating in every context
 - Considers broader features outside traditional boundaries of building energy models
Considerations around overheating

- Technical issues
 - Relatively well known
 - Admission and expulsion of heat from the building

- Practical issues
 - Less well appreciated
 - Only now becoming apparent

- Practical issues down to judgement of the energy modeller
 - May be reflected in the model or not
 - Not a reflection upon any one modelling technique or tool

- Focus given here to the highest risk buildings
 - Urban apartments and issues that affect them most

- Most other dwelling types have lower likelihood of overheating
 - *So long as basic elements of shading and natural ventilation are available*
Effect of local environment

- Local environment
 - Urban versus rural
 - Generally not under control of the developer, but can affect the ambient temperature significantly
 - Regional weather files reflect part of urban temperature uplift
- Localised UHI effect
 - General uplift for any city, localised effects depending on the specific layout of a city and proximity to green space
- Heat build-up in urban environment
 - Proportion of concrete to green space governs how heat builds up and is retained
 - Local albedo
Heat gains and losses

Gains
- Readily controlled in some cases
 - May be difficult on an operational level
- Solar gains
 - Shading to counteract solar gain increasingly well understood
 - External or internal blinds.
- Internal gains
 - Many sources, some obvious, some obscure
 - Particular experience in recent years is unexpected heat build-up related to communal heating systems

Losses
- Ventilation
 - Rate of heat expulsion must be enough to offset the rate of heat gains
 - Should be controllable by the occupant
- Free cooling
 - Cooling via natural ventilation determined by ability to achieve high air flow
 - Window sizing and placement, potential for use of stack effect, cross ventilation
- Barriers to natural ventilation
 - Noise, pollution, and security
 - May mean occupants cannot be expected to open windows for ventilation
System design and maintenance

– Initial design (effectiveness) of systems and how performance is preserved later in the lifecycle
– Mechanical ventilation
 – Air change rates higher than required for air quality reasons
 – MV systems sized to provide sustained high purge ventilation rates
 – Likely to require larger duct sizing than normal
 – Ventilation inlets shaded and in position where inlet air is not locally warmed
– Maintenance
 – Mechanical systems need to be maintained – filters, operation
The occupant

- Role of the occupant is significant
 - Modelling specific to the occupier yields the most accurate result
 - But occupants or their habits may change
 - Most useful to assess building performance given typical occupant behaviour
 - Determines building subject to reasonable consideration of overheating risk
- Accounting for occupant behaviour
 - Installing and using curtains or blinds
 - Can be encouraged but not assumed
- Iterating through multiple scenarios reporting 75th percentile result
 - Not an alternative to occupant education!
Occupant education

– Education about operation of occupants’ dwelling can improve experience of thermal comfort
– Difficult for occupant to make instinctive connection between closing blinds, opening windows and overheating
 – May be time lag in the effects
 – Different strategies needed at different times
– Passivhaus and CfSH certifications require ‘user guide’ for the house
 – Also recommended by CIBSE Guide A
– Designing for the worst case (no positive occupier action)
 – Potential drift towards use of air conditioning as quick fix
 – Could encourage occupier apathy, rebound effect
Stages in the dwelling lifecycle

<table>
<thead>
<tr>
<th>Stage</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preplanning</td>
<td>• Urban or rural location
• Consider local environment</td>
</tr>
<tr>
<td>Master planning</td>
<td>• Canyon effect
• Urban Heat Island</td>
</tr>
<tr>
<td>Local Planning</td>
<td>• Green spaces in masterplan
• Communal systems
• Noise, pollution or security issues</td>
</tr>
<tr>
<td>Dwelling level planning</td>
<td>• Natural / mechanical ventilation
• Window sizing, type of opening light, placement, cross ventilation
• Hot air extracted high level to prevent build-up of heat
• South west façade of high rise apartments with low-albedo surroundings</td>
</tr>
<tr>
<td>Building Systems</td>
<td>• Inlet shaded from the sun
• Flow rate for purge ventilation calculated and fully attained
• Maintenance requirements communicated with landlord/owner
• Communal heating network design</td>
</tr>
<tr>
<td>Occupancy</td>
<td>• Blinds or curtains during warm weather, and able to open windows at the same time for natural ventilation
• Noise, pollution or security issues may change over the lifetime of the building</td>
</tr>
</tbody>
</table>
Decision tree approach

- Typical measures available to developers, designers and occupiers
 - From project conception through to occupancy
 - Measures presented in order of applicability
- ~3,000 permutations identified for all inputs
 - Only those with greatest effect upon final overheating risk shown
 - Average result of other permutations, with aim of offering high level advice
 - Approach could be extended to cover greater detail or for specific property
- Example
 - Indicative decision tree generated relevant to the highest risk of property types
 - Modelled top floor apartment to building regulations
 - Apartment 60m2 TFA, windows sized to 25% of treated floor area, East-West
 - Thames region for urban case
Decision Tree

Urban low albedo asphalt and concrete
- Secure ventilation through dedicated louvers if necessary
- Security, noise, air pollution
- Secure ventilation through dedicated louvers if necessary
- Security, noise, air pollution
- Green space, Increase in local albedo
- Green planting

Urban
- Natural ventilation
- Security, noise, air pollution
- Secure ventilation through dedicated louvers if necessary
- Mechanical Ventilation - maintain purge flow rate and maintenance schedule
- Mechanical Ventilation to ADF background rate only
- Windows open and Blinds closed
- Windows closed
- High
- Not significant
- Medium
- Not significant
- Not significant

Rural
- Natural ventilation
- Security, noise, air pollution
- Secure ventilation through dedicated louvers if necessary
- Mechanical Ventilation - maintain purge flow rate and maintenance schedule
- Mechanical Ventilation to ADF background rate only
- Windows open and Blinds closed
- Windows closed
- High
- Not significant
- Medium
- Not significant
- Not significant
Application/Conclusions

- Presented for use as a shorthand
 - To illustrate impact of timely collaboration and intervention
- Key items to consider
 - Outside bounds of traditional simulations
- Not a substitute for building energy simulation
 - Whole house, simplified
- Further investigation and uses
 - Applicability to specific dwellings
 - Items to consider in modelling
 - Use with DSM for reporting