A brief introduction to London Underground

- 270 stations
- 249 route miles
- 68.8m (221ft) below ground level at the lowest (Holly Bush Hill, Hampstead – Northern Line)
- 1,065 Million passenger journeys last year

What defines a tunnel?

What services & facilities are required?

Environmental Considerations:
- Air, Light, Water

Safety Factors:
- Fire & temperature, flooding, fumes,
- Electrocuton

Operational & working considerations:
- Communications, power

What services must we consider?
- Ventilation
- Drainage
- Lighting
- Fire / emergency access and egress
- Power
- Communications
- Pneumatic (compressed air) systems
- Flood prevention

Tunnel (& public area) ventilation (1)
(Railway Safety Principles)

Air quality & quantity:
An acceptable environment in normal operation (tunnels), and maintain a supply of fresh air (stations)

Temperature:
Stations: Ideal limit 25°C, but no more than 5°C above outside ambient when this exceeds 20°C (research indicates that 29°C permissible).
Tunnel (& public area) ventilation (2)

Requirements of Railway Safety Principles

Air velocity:
Low noise, must not cause hazard

Pressure pulse:
For underground stations, system should include a means to accommodate the aerodynamic effects generated by trains passing through restricted spaces

Air quality and quantity

- There should be sufficient air movement to prevent the formation of pockets of stale, stagnant air
- Fresh air supply and foul air removal to limit levels of air pollution/build up of hazardous vapours (air changes)
- Air temperature should be limited by removal of heat which means:

 Air change rate 4-6 changes/hr

 Personal fresh air supply 3.5 litres/s per person

Piston Effect (1)

Blockage ratio:

- **Heavy Rail** - 20-30% of double track
 - 50-60% of single track
- **Metro** - 70-90% of deep level tube tunnel

Idealised design would be adequate to maintain sufficient air flow under normal operations without need for mechanical ventilation.

BUT -

Piston Effect (2)

Under abnormal and degraded conditions (high ambient or stalled service), additional mechanical ventilation becomes necessary

i) To maintain comfort and limit panic;

ii) To prevent thermal stress (heat stroke)

Ventilation & Fire (1)

Tunnels:

For new build, there must be the ability to control movement of smoke in an emergency

(and clear smoke after a fire)

Stations:

Must be constructed to maintain a safe environment and escape routes for a sufficient period of time to enable evacuation, and must have a means of purging smoke once evacuation completed

Tube tunnel cross-section
Arrangement of tunnel vent shafts

Fire Design Considerations

Fire load:
Assume heat produced by single vehicle fire (tunnel) or suitcase (station)

Tunnel Signage:
Giving direction and distance to nearest access point

Hydrant main:
Dry or wet mains, outlet pressure: 4.5 ± 0.5 bar; leak monitoring; drainage capability

Tunnel fire

Schematic of unventilated tunnel fire
- Uncontrolled smoke flow
- Symmetrical airflow pattern

Schematic of insufficiently ventilated tunnel fire
- Uncontrolled smoke flow
- Back layering occurs

Ventilated tunnel fire

Controlled smoke flow
- Critical velocity established

Fire – operational considerations

Access
Provided at distances determined by ability of fire brigade to penetrate effectively into the fire zone. Could be portals, stations or intermediate shafts

Intermediate shafts
Should be designed to BS 5588 (pt 5), with a fire fighting lift if tunnel deeper than 9m. Must have adequate hard standing at surface for emergency vehicles.

Side walkway
Preferred configuration

Tunnel side walkway and access space
Communications

Radio:
 - Driver to control
 - Control to train PA (Discrete)
 - Control to all (Open)
 - Emergency services

Telephones:
 - Direct line to control

Traction supply:
 - Means of emergency discharge

Other Considerations

Drainage:
 - Seepage rate
 - Access limitation (maintenance)

Traction Power:
 - Emergency switch-off facility

Power supply:
 - Site work purposes
 - Safety low voltage

Escalators

- Public Service Type
- Compact (Shop) Type

A bit of history

- Early Lighting was open-flame gas
- Electric arc lamps came soon after – before gas mantles
- Filament lamps introduced progressively from around 1900
- For deep-level tube platforms, light tiling was important
- Fluorescent arrives during WW2
- GLS dominated until late 1970s
How standards have changed

- Before about 1910, present metrics were not available
- By 1920s, lighting was being “designed”, but with far lower illuminance than we use today – typically 10-25lux
- The 1935-40 New Works Plan (extensions of Northern & Central Lines) produced the first “New Works Standards” typically 15-30lux
- With the arrival of fluorescent lighting, standards revised upwards again – now 30-50lux
- Victoria Line Standards push up to 100lux
“Standardization”

- After Victoria Line construction, the “New Works Standards” were extended and adopted for all works
- Some discussion with main-line rail, but no convergence of standards at that stage
- Very different values for open and sub-surface areas (20lux vs. 100lux)
- 1980s: Standards applied for all relighting schemes through Electrical Design Notices (EDNs) – Churchouse conversion
- By mid-1980s, non-engineers were having significant input to lighting requirements

Lighting Good Practice (1)

- Lighting the task:
 - This is the main aim, so evaluate what the tasks are (or might be);
 - There are varied tasks in the LU environment, so we have to compromise;
 - It is usually more practical to design area illuminance;
 - Contrast can help – integration with surface finishes is important

Lighting Good Practice (2)

- Light Vertical surfaces:
 - Although it’s easier to design for horizontal illuminance, some light in the vertical plane is needed to help us see, and to aid facial recognition;
 - Using reflected light helps;
 - Using luminaires with wide distributions (such as Churchouse!) helps too;
 - The small sacrifice in energy consumption will be more than compensated for by the effectiveness of the scheme

Lighting Good Practice (3)

- Uniformity:
 - In the extreme, this is used as a way of defining the minimum illuminance relative to the average;
 - It is really about much more than that;
 - Uniform lighting may be easier to create, but it can also be bland;
 - Some non-uniformity is desirable to assist orientation

Lighting Good Practice (4)

- Glare
 - Public areas are active environments, people are not fixed in one position as in offices;
 - Light sources (luminaires) are generally positioned well outside normal visual zones;
 - Established glare criteria are only applicable to regular arrays of luminaires;
 - Luminance limits are far less significant for the visually impaired than gradual changes in brightness;
 - In some areas such as control rooms and workshops, we must consider glare

Lighting Good Practice (5)

- Colour:
 - There are many tasks where colour is important (for example, reading the Underground map);
 - Colour rendering is what defines how well light sources enable to see colour;
 - Good colour lamps no longer carry a serious energy penalty;
 - Colour temperature (or appearance) determines the warmth or coolness of the appearance of an area, but does not itself affect how colours can be identified
Controls (1)
• These are mandatory – Part L
• Even if they weren’t, using controls is good practice
• The most simple control is a switch
• No new installation should rely on MCB control alone
• Contactor wiring needs careful design
• Automate – give people a choice and they will leave the lights on

Controls (2)
• Use daylight-linking and occupancy detection wherever possible
• Put manual controls where the operators can access them
• Put over-rides where the operator has to make an effort to access them
• “Exotic” systems such as DALI need careful consideration, and our traditional contractors don’t like working with them (so charge a premium)
• Emergency Lighting