Supermarket POE modelling including refrigeration heat transfers

Frances Hill
University of Manchester
Understanding the gaps between operational energy use and modelling, for supermarkets

• Supermarkets, energy, and CO$_2$
• Operational energy use vs Design, SBEM/NCM
• Modelling
• Improving design cf NCM
• Conclusions
UK supermarkets

• Over 91,500 supermarkets in UK
• ~ 300 new stores each year
 – Many others refitted
• Use 3% of UK electricity – on site
• Account for 1% UK CO₂ emissions
Supermarket energy demands: Reality is very different from design

Lighting demand is similar to design, cooling and heating demands are very different - Why?

Frances Hill, 27/4/2012
Components of energy use

Reality is very different from design

Frances Hill, 27/4/2012
Model including non-NCM (unregulated) energy use

- Spreadsheet in Excel
- Hourly weather data
- Store temperature range 18-25°C
- Profiled occupancy, 24 hours
- Include refrigeration
 - With doors,
 - Opened according to occupancy

- But not catering or in-store bakery
 - Yet

Frances Hill, 27/4/2012
Model including non-NCM (unregulated) energy use

• Spreadsheet in Excel
• Hourly weather data
• Store temperature range 18-25C
• Profiled occupancy, 24 hours
• Include refrigeration
 – With doors,
 – Opened according to occupancy
 For thermal impacts
• But not catering or in-store bakery
 – Yet
Building model

• Simple U value box
 – Plus windows and aerogel rooflights
 – Thermal bridging not modelled
• Rooflight solar gains
• Radiant gains and losses to/from roof and rooflights
• Ventilation rate set values
 • Windcatchers explored
• No stratification
Lighting

- 900/400lux
- Daylight sensitive
- Light from rooflights evenly spread
- Lighting infinitely dimmable
 - No staging
 - No lower limit
- Heat from lights incorporated into thermal balance
 - But not stratified!
Lighting

- 900/400lux
- Daylight sensitive
- Light from rooflights evenly spread
- Lighting infinitely dimmable
 - No staging
 - No lower limit
- Heat from lights incorporated into thermal balance
 - But not stratified!

Operational lighting consumption ~ 50% greater than this model predicts

Frances Hill, 27/4/2012
Lighting

- 900/400lux
- Daylight sensitive
- Light from rooflights evenly spread
- Lighting infinitely dimmable
 - No staging
 - No lower limit
- Heat from lights incorporated into thermal balance
 - But not stratified!

Operational lighting consumption ~ 50% greater than this model predicts

Frances Hill, 27/4/2012
Heating and cooling

• 2 boilers, one cooler
• Modelled as ON / OFF per iteration (15 mins)
• Hysteresis range 2^0C at each end
 – 18-200C for heating
 – 23-250C for cooling

• Fans and pumps according to demand
Refrigeration

• Freezer cabinets with doors
• Chiller cabinets with doors
• Open chillers

• Fabric
• Ventilation
• Auxiliary power uses
Refrigeration on NCM

25 W/m2
Dehumidification

• Only if needed
• Humidity ratio maintained at or below 7.5 g/kg
 – Based on ambient humidity and anthropogenic water vapour
 – To maintain efficiency of evaporator coils in refrigeration cabinets
 – (may not be appropriate with mostly closed cabinets)
Thermal mass

• Floor
• Goods
• Air

• Used with first order equation on 4x hourly iteration
Sensitivity to ventilation

NCM

Refrigeration = cold

Frances Hill, 27/4/2012
Sensitivity to insulation

NCM

Refrigeration = cold
Sensitivity to rooflight fraction

NCM

Refrigeration = cold

125MWh/a

46MWh/a

Frances Hill, 27/4/2012
Halving ventilation, doubling insulation

Retail floor energy demand (MWh/a)

15% reduction = 280 MWh/a

Frances Hill, 27/4/2012
Conclusion

• In a supermarket, omission of refrigeration heat transfers on the retail floor is causing a major gap between operation energy use and design expectations

• Inclusion of refrigeration cabinet heat transfers at design stage could reduce energy demand by 15%

• Inclusion could also incentivise improvement in cabinet design, as improvements have effect on both refrigeration and heating demands
Thank you!