Presentation outline:

- My background
- Research focus
- Two modelling case studies
 - Passive solar storage wall (i.e. a Trombe wall)
 - Active solar-air collector
- Questions
My background:

- Research engineer based in industry
- Currently undertaking an Engineering Doctorate (EngD) in Environmental Technology
- Industrial project sponsored by Brunel University and Buro Happold Ltd

Buro Happold:

- Global engineering consultancy for the built environment
- Sustainability and Building Physics team (London)
Focus of my research:

- Developing and testing new building fabric technologies incorporating high performance silica aerogel insulation to reduce demand for heating and artificial lighting in buildings

- Millions of homes in the UK are poorly insulated and expensive to heat
- Some conventional solutions to improve these homes are not cost effective
What is aerogel?

- Transparent “super-insulation” material
- Invented in the 1930s; only now emerging in the construction market
- Translucent granules are mass produced
- Solid tiles can be produced, but they are fragile and expensive, thus are not commercially available
How does it work?

- Material contains a nanoporous structure – up to 99% air (1% silica)
- Nanosized pores block heat transfer by convection, conduction and long-wave thermal radiation
- Silica structure is highly transparent to light and short-wave solar radiation
How can it be used?
Concepts to insulate existing windows:

- ‘Pop-in’ magnetic secondary glazing
- Internal/external airtight roller shutters
- Sliding shutters integrated into external wall insulation

Measurements show an 80% reduction in heat loss!
Concepts for passive solar storage:

- High performance cover in south facing solar storage walls
- Aerogel has a lower solar transmission to standard single glazing but significantly reduces heat losses

Let solar energy in. Trap it. Let it accumulate. Use it
Concepts for active solar collection:

- Supply free solar heated warm air to a space instantaneously
- Storage can be introduced through PCM in collector or ductwork
- Air-water heat exchangers can avoid wasting heat in summer
CASE STUDY 1: Aerogel Trombe wall

- Concept currently planned for a new eco-home in the UK
- Property will be highly insulated and have high thermal mass
- Aerogel Trombe wall is anticipated to reduce need for heating during cold-mild sunny days

Approach used:

- Parametric calculator built in Excel
- Model combines building parameters obtained through IES Virtual Environment software with average solar radiation and degree-day data for the site.
- Max allowable area = **7.5m²**
Calculation methodology:

Duffie and Beckman (2006), Solar Engineering of Thermal Processes

- Widely cited book to predict the performance of solar technologies
- Calculations validated through TRYSYS simulations + measurements
- Educational software available from www.fchart.com

Contents include:

- Solar radiation calculations
- Transmission properties of materials
- Passive, active and hybrid solar technologies
- Energy storage systems
- Financial modelling
Overview of method:

Chapter 22: Un-utilizability design method for collector-storage walls

- Method assumes system is unvented and heat transfer though the wall is linear
- Calculates a buildings monthly-average heat load with + without a Trombe wall, based upon:
 - Absolute upper and lower limits of the building and walls thermal capacity
 - Storage-dump ratio, defined by the systems actual thermal capacity
Innovative Use of Aerogel in Passive and Active Solar Storage Walls
Mark Dowson – CIBSE Building Simulation Group – 2nd June 2011

Characterise site
- latitude
- longitude
- ground reflectance

Characterise building
- Heat loss parameter
- Thermal capacity
- Stat set points
- Allowable temp swing

Characterise wall
- Area
- Thickness
- Heat capacity
- Density
- Conductivity
- Loss co-efficient

Characterise cover transmission
- Solar transmission
- Solar absorbance
- Solar reflectance
- Overall product in terms of beam, diffuse and ground reflected radiation

Table: Characterise Site

<table>
<thead>
<tr>
<th>Characterise Site</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude</td>
<td></td>
</tr>
<tr>
<td>Longitude</td>
<td></td>
</tr>
<tr>
<td>Ground reflectance</td>
<td></td>
</tr>
</tbody>
</table>

Table: Characterise Building

<table>
<thead>
<tr>
<th>Characterise Building</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat loss parameter</td>
<td></td>
</tr>
<tr>
<td>Thermal capacity</td>
<td></td>
</tr>
<tr>
<td>Stat set points</td>
<td></td>
</tr>
<tr>
<td>Allowable temp swing</td>
<td></td>
</tr>
</tbody>
</table>

Table: Characterise Trans Wall

<table>
<thead>
<tr>
<th>Characterise Trans Wall</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td></td>
</tr>
<tr>
<td>Heat capacity</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td></td>
</tr>
<tr>
<td>Loss co-efficient</td>
<td></td>
</tr>
</tbody>
</table>

Table: Trans/Rice Absorption Calculations

<table>
<thead>
<tr>
<th>Trans/Rice Absorption Calculations</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td></td>
</tr>
<tr>
<td>Heat capacity</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td></td>
</tr>
<tr>
<td>Loss co-efficient</td>
<td></td>
</tr>
</tbody>
</table>

Table: Monthly-average values

<table>
<thead>
<tr>
<th>Monthly-average values</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree days</td>
<td></td>
</tr>
<tr>
<td>Ambien ec temp</td>
<td></td>
</tr>
<tr>
<td>Days in month</td>
<td></td>
</tr>
<tr>
<td>Average total solar radiation</td>
<td></td>
</tr>
</tbody>
</table>

Table: Parameteric calculator

<table>
<thead>
<tr>
<th>Parameteric calculator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daylight hours</td>
<td></td>
</tr>
<tr>
<td>Solar radiation absor</td>
<td></td>
</tr>
<tr>
<td>Building loads</td>
<td></td>
</tr>
<tr>
<td>Wall temperature</td>
<td></td>
</tr>
<tr>
<td>Critical radiation & energy dump calc</td>
<td></td>
</tr>
<tr>
<td>Storage capacity of wall & building</td>
<td></td>
</tr>
<tr>
<td>Solar fraction & Net energy gain</td>
<td></td>
</tr>
</tbody>
</table>

Summary table of key results

<table>
<thead>
<tr>
<th>Key Results</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar fraction</td>
<td></td>
</tr>
<tr>
<td>Net energy gain</td>
<td></td>
</tr>
<tr>
<td>Beam, diffuse and ground reflected radiation</td>
<td></td>
</tr>
</tbody>
</table>
Significant amount of heat is wasted if the building has no thermal capacity.
Actual building has high thermal capacity, thus wastes little heat.
Innovative Use of Aerogel in Passive and Active Solar Storage Walls
Mark Dowson – CIBSE Building Simulation Group – 2nd June 2011

Predicted Monthly Heating Load with/without the Trombe Wall

- Total building heat load
- Reduced load with Trombe wall

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

| Total building heat load with Trombe Wall | Total building heat load without Trombe Wall |
Innovative Use of Aerogel in Passive and Active Solar Storage Walls

Mark Dowson – CIBSE Building Simulation Group – 2nd June 2011

Comparison against single glazed system

Trombe wall
Loses more heat than it gains
If it has a single glazed cover

<table>
<thead>
<tr>
<th>Month</th>
<th>Total building heat load with Trombe Wall (kWh)</th>
<th>Total building heat load without Trombe Wall (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Innovative Use of Aerogel in Passive and Active Solar Storage Walls

Mark Dowson – CIBSE Building Simulation Group – 2nd June 2011

Aerogel Trombe Wall Net Energy Gain & Average Surface Temperature

Strong correlation between net energy gain and average temperature
Max average temperature = 35°C

Net Energy Gain (kWh)

Average surface temperature (°C)

Trombe Wall net energy gain

Trombe Wall average surface temperature
Summertime overheating mitigation

- Calculator assumes wall is un-shaded, but basic modelling can demonstrate benefit of shading grill:

1m³ with glazed south façade (g-value = 1)

Shading grill cutting 45° solar angle

Annual solar gain (beam + diffuse)

Direct solar radiation blocked mid April - September
Key results:

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Annual total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy requirement (no trombe wall) kWh</td>
<td>627</td>
<td>685</td>
<td>648</td>
<td>495</td>
<td>192</td>
<td>111</td>
<td>67</td>
<td>44</td>
<td>137</td>
<td>368</td>
<td>548</td>
<td>819</td>
<td>4741 kWh/year</td>
</tr>
<tr>
<td>Energy requirement (with trombe wall) kWh</td>
<td>589</td>
<td>551</td>
<td>411</td>
<td>238</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>122</td>
<td>395</td>
<td>756</td>
<td>3033 kWh/year</td>
</tr>
<tr>
<td>Solar fraction</td>
<td>-</td>
<td>0.14</td>
<td>0.22</td>
<td>0.39</td>
<td>0.54</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.68</td>
<td>0.90</td>
<td>0.11</td>
</tr>
<tr>
<td>Energy savings (84% efficient boiler) kWh</td>
<td>81</td>
<td>159</td>
<td>282</td>
<td>306</td>
<td>229</td>
<td>132</td>
<td>80</td>
<td>52</td>
<td>163</td>
<td>293</td>
<td>182</td>
<td>75</td>
<td>2034 kWh/year</td>
</tr>
<tr>
<td>Fuel bill savings (0.04p/kWh gas) £</td>
<td>3.2</td>
<td>5.4</td>
<td>11.3</td>
<td>12.2</td>
<td>9.1</td>
<td>5.3</td>
<td>3.2</td>
<td>2.1</td>
<td>6.5</td>
<td>11.7</td>
<td>7.3</td>
<td>3.0</td>
<td>81 £/year</td>
</tr>
</tbody>
</table>

Preliminary payback graph:

Assumptions
- Capital cost £ 1,500
- Fuel price increase rate 6% per year
- Interest rate 2% per year

Net present value
- Year 5 £ 1,116
- Year 10 £ 650
- Year 15 £ 86
- Year 20 £ 598
- Year 25 £ 1,427
- Year 30 £ 2,433
- Year 35 £ 3,651
- Year 40 £ 5,127
CASE STUDY 2: Aerogel Solar Collector

- Concept currently being constructed as part of the ‘Retrofit for the Future’ competition
- Property is a 3 storey 1960’s end-terrace in Thamesmead, South East London
- Refurbishment strategy must achieve deep CO₂ reductions in order of 80%
Refurbishment strategy

- Aspiring towards Passivhaus certification
- Externally insulating building
- Triple glazing throughout
- Air-tight tapes on all junctions
- Mechanical ventilation with heat recovery
- DHW from boiler + solar thermal panels
- Electricity from roof mounted PVs
Aerogel solar collector

- Active solar-air system anticipated to increase the efficiency of the MVHR
- Normally an MVHR uses extracted heat from the kitchen/bathrooms to indirectly pre-heat incoming air
- Aerogel solar collector will be used to elevate this extracted air to higher temperatures
Innovative Use of Aerogel in Passive and Active Solar Storage Walls
Mark Dowson – CIBSE Building Simulation Group – 2nd June 2011

System placement:

South facing top floor suitable for solar collector
Innovative Use of Aerogel in Passive and Active Solar Storage Walls
Mark Dowson – CIBSE Building Simulation Group – 2nd June 2011

Modelling Validation:
Calculation methodology:

Duffie and Beckman (2006) - Chapter 6: Flat plate solar air heater

- Parametric Excel tool combining design constants from steady state modelling with dynamic annual-hourly climate data generated using IES Virtual Environment software
- Model calculates outlet temperatures and energy generation before/after the ductwork leading to MVHR
Innovative Use of Aerogel in Passive and Active Solar Storage Walls

Mark Dowson – CIBSE Building Simulation Group – 2nd June 2011

Summary table of key results

<table>
<thead>
<tr>
<th>Character</th>
<th>Weather (snapshot)</th>
<th>Character</th>
<th>Heat loss co-efficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air flow properties</td>
<td>Characterise weather</td>
<td>Ductwork losses</td>
<td>Efficiency factors</td>
</tr>
<tr>
<td>Characterise Collector</td>
<td>Characterise Heat Transfer-Mile</td>
<td>Characterise MVHR</td>
<td>Summary table of key results</td>
</tr>
<tr>
<td>Characterise House</td>
<td>Characterise Ductwork</td>
<td>Characterise Air properties</td>
<td>Performance calculations</td>
</tr>
<tr>
<td>Characterise resistance network (construction layers)</td>
<td>Characterise MVHR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Predicted supply air temperatures:

- Predicted supply-air temperatures up to 30°C on cold-mild sunny days
- Peak temperatures up to 40°C in March & September indicating bypass controls required

- Note that supply air temperatures without solar collector are predicted between 18-21 °C
- However, this may not be accurate as model assumes constant flow rate & exhaust air temp of 23°C
Efficiency compared to single glazed system:

Notes on efficiency:
- System located on vertical wall – not at 30° pitch
- System inlet temperature – higher efficiency occurs if system heats ambient air directly
- Absorber sheet is perforated – efficiency calculation assumes absorption area is reduced
Next steps:

- Construction
- Monitoring
- Validation
Installation of solar collector frame:
Installation of pre-fabricated ductwork:
Aerogel panels,
absorber sheet
MVHR + flow
control dampers:
Monitoring & Validation:

- Whole house
 - Gas, electricity + water consumption
 - Internal + external temperatures and humidity
 - Performance of renewable technologies

- Aerogel solar collector:
Thank you for listening

Mark Dowson
mark.dowson@burohappold.com
 Office: (+44) 020 7927 9700
 Mobile: (+44) 07706 260523

Modelling Reference:
 Duffie and Beckman (2006), Solar Engineering of Thermal Processes