Transmission risk in transport: towards a model of multi-route exposure for TRACK

Simon Parker, James Nally, Daniel Miller, Joe Drodge, Ben Higgins, Gary Reeves
Chemical and Biological Advice Group
CBR Science Division
To understand scale of risk and choose appropriate mitigation measures to minimise infection on transport we need to understand the role of different routes of transmission
 - Close range, small aerosol, surface contact

The Environment and Modelling Group (EMG), a sub-group of SAGE, together with DfT, academic partners, PHE and Dstl, have developed a programme of work to create a transport risk model

UKRI have approved £1.6m of funding to be made available for TRACK. DfT are providing £156k to fund DSTL support with modelling
Leeds/Dstl/Manchester

Develop computational models to assess the likelihood of COVID-19 infection through aerosol, close range and contact transmission during typical bus, tube and train travel scenarios.

Building on combined expertise in modelling airborne exposure and surface transfer
 - **Microscale stochastic risk model** using a quantitative microbial risk assessment approach
 - Rapid planning tool building on microscale results

Data from the other WPs will be incorporated into the model during the project

Stochastic risk model
- Mechanistic representation of transmission
- Three transmission routes
- Simulate multiple journeys
- Randomised passenger properties and contact behaviour
- Can simulate mitigation measures
- Requires many 1000s of runs

Planning tool
- Captures key results from stochastic model
- Allows effects of high level parameters to be explored
Transmission of Virus in Carriages (TVC) model

- Dstl modelling work focused on stochastic risk model using approach based on Lei et al (2018)
- Initial model based on London Underground (LU) Victoria Line carriage
 - Northbound/Southbound route
 - Internal volume and surface area
 - Ventilation details
 - Frequently touched surfaces tracked – handrails and seat rests
 - Discrete events – alighting, boarding, transit between stations
- Passengers
 - Individual entities that can board or alight at any station (toy data, LU data)
 - Probability of being infectious
 - Cumulative dose by each potential route of infection

Lei et al, 2018
Initial methodology will be updated and incorporate data as it becomes available.

Airborne exposure - small aerosol (< 5µm dry particle diameter)
- Infectious passenger(s) acts as source once on board
- Assume a single well-mixed zone including ventilation, deposition & viral decay
- Analytical calculations for concentration and exposure after Fitzgerald and Parker et al (2014)

Close range exposure – droplet transmission
- Location of passengers not tracked explicitly
- For each infectious passenger, the number of co-passengers within 0-1 m and 1-2 m estimated based on passenger density and distribution of available areas

Surface contact exposure
- Assume that infectious passenger has initial virus contamination on hands
- Deposition from respiratory activity during travel included
- Decay on surfaces included
- Passengers are assumed to touch a fixed number of surfaces at random on boarding / alighting
• Initial parameters as basis
• One infected passenger and 30 min co-occupancy
• Source strength is the key parameter (and subject to the greatest uncertainty)
 – Baseline is a high estimate of 10^8 virus/mL in saliva and Duguid (1946) data (<20µm wet droplets) in line with Jones (2020)
• High air change rate on LU carriage means very limited influence from:
 – Deposition rate
 – Decay rate

Duguid (1946) https://doi.org/10.1017/s0022172400019288
Close range exposure

- Preliminary example with toy passenger data:
 - 10 stations
 - 20 passengers board for first five
 - Passengers travel for five stops
- One infectious passenger boards at the start
- Colours show proximity
 - Note change with passenger density
- Quantitative estimate for exposure currently being implemented after Lei et al (2018)
 - 2m zone for large droplets with mucous membrane settling and inspiration
Close range exposure

- Preliminary example with toy passenger data:
 - 10 stations
 - 20 passengers board for first five
 - Passengers travel for five stops

- One infectious passenger boards at the start

- Colours show proximity
 - Note change with passenger density

- Quantitative estimate for exposure currently being implemented after Lei et al (2018)
 - 2m zone for large droplets with mucous membrane settling and inspiration
Preliminary results using the same toy data
Plotting non-infectious passenger hand and surface contamination without coughing onto hands or surfaces
 - Rapid fall in mean concentration as contamination spreads
 - Proportion of passengers with some contamination rises with number of stops
 - The assumed number of surfaces touched has an important effect
Third plot show sensitivity to:
 - Coughing/sneezing onto hands or surfaces
Preliminary results using the same toy data
- Plotting non-infectious passenger hand and surface contamination without coughing onto hands or surfaces
 - Rapid fall in mean concentration as contamination spreads
 - Proportion of passengers with some contamination rises with number of stops
 - The assumed number of surfaces touched has an important effect
- Third plot show sensitivity to:
 - Coughing/sneezing onto hands or surfaces
Summary and next steps

- Preliminary stochastic model of exposure via three routes developed
 - Concept and design
 - Software implementation and QA underway
 - Initial parameters selected and limited sensitivity analysis performed

- Initial next steps include
 - Close range exposure
 - Dose-response estimate
 - Parameter review and update
 - Full sensitivity analysis and output for planning tool – including relative effects of passenger loading and mitigation
Further ahead
- Extend model to bus and overground train environments
- Include more sophisticated passenger behaviour
- Update and validate model using observed data and wider scientific evidence

Stochastic risk model and planning tool, together with outputs from other WPs, will provide:
- Assessment of likely risk of COVID-19 transmission through small aerosol, close range and surface contact routes for typical bus, tube and train scenarios
- Support to DfT policy teams to design interventions and transport operators to assess risk with the potential for read across to other sectors
Any questions?