Building performance evaluation of dwellings

Issues relating to communal heating performance and thermal comfort

Michael Lim
Overview

– Introduction to BPE
– Instrumentation, measurements and data acquisition
– Example dwelling
– Features and findings
 • Fabric
 • Ventilation
 • Communal heating system
 • Energy use and benchmarking
 • Thermal comfort
– Lessons learned
– Concluding remarks
Introduction to BPE
Introduction to building performance evaluation

- A process of evaluating the performance of a building
 - Individual components
 - Interaction for compounded effect

- Components/aspects include
 - Building fabric
 - Building services and controls
 - Consumption of energy, fuel and water
 - Design intent, delivery, commissioning and handover
 - Occupant comfort, well-being and satisfaction
 - Environmental and function sustainability

- Ideally part of Soft Landings and carried out
 - Design stage
 - Construction stage
 - Post-construction/Pre-occupancy stage
 - Post-occupancy stage

- Objectives
 - Inform project development,
 - Enhance delivery,
 - Optimise performance,
 - Trouble shooting,
 - Provide feedback,
 - Inform future projects/lessons learned
Building performance evaluation scope

The study involved:

- Site-walkthrough and inspection
- Design and construction information review
- Building user surveys & developer post-construction interviews
- SAP assessment validation and energy benchmarking
- Thermography imaging & in-situ U-value
- As-build/as-installed system review and performance diagnostics
- Environmental condition measurements and monitoring
- Heat, gas, electricity and water consumption
- Appliances (small power) energy use
- Environmental and energy data for performance and thermal comfort analysis
Instrumentation, measurements and data acquisition
Instrumentation, measurements and data acquisition

- Environmental – external
 - Air temperature
 - Relative humidity

- Environmental - apartments:
 - Air temperature
 - Relative humidity
 - CO₂

- Resources - apartments:
 - Heat supply @ HIU (space & DHW)
 - Electricity:
 - MVHR
 - Lighting
 - Small power
 - Water consumption
 - Plug-loads
Instrumentation, measurements and data acquisition

- Eltek instrumentation for electricity, water, environmental measurement
- In-situ heat flux measurement for U-value
- Plug monitor for appliance load
- Temperature loggers
- Infrared thermometer for ad-hoc measurement
Instrumentation, measurements and data acquisition

- Smoke stick testing highlighting filtration and leakage paths
- Air tightness test – door seal and fan pressuring apartment (BSRIA)
- Thermography imaging – highlight cold bridging (BSRIA)
- Airflow hood with anemometer - MVHR flow rate measurement (BSRIA)
Example dwelling
Example dwelling – typical modern development
Example dwelling – typical apartment unit

- Main features:
 - High proportion glazing
 - High performance fabric
 - MVHR system
 - Air quality (base)
 - Moisture/odour removal (boost)
 - Summer by-pass
 - Openable windows for purge ventilation
 - Communal heating system (space heating and DHW)
 - HIU in service cupboard
 - Radiator or underfloor heating

- Might have:
 - Winter garden
 - External shading
 - Comfort cooling
Features and findings
Features and findings: Fabric performance - air tightness, U-values

Thermographic imaging revealed cold-bridging

Limited in-situ U-value by 3rd-party suggested external fabric performance close to as-designed

<table>
<thead>
<tr>
<th>External wall</th>
<th>Actual</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-value (W/m²K)</td>
<td>0.23</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Building performance evaluation of dwellings

May 2018
Features and findings: Ventilation - openable windows

- Openable windows and doors
 - Too close to soffit
 - Obstructed by curtain rail
 - Reduced free area

- Opening restrictor:
 - Limits opening hence free area
 - Override latch – purge vent

- Window frames, mullions and recesses:
 - Reduced free area
 - Worse for higher performance windows

- Occupant behaviour
 - Noise
 - Pollution
Features and findings: Ventilation - MVHR

- MVHR performance of 3 apartments:
 - Lower measured ventilation in 2 apartments than commissioned
 - Rates below BRegs Part F (2006) normal operation rates
 - Potential causes:
 - High pressure drop
 - excessive flexible ducts
 - narrow ducts
 - MVHR undersized
 - Poor installation/design
 - Potential moisture build-up, condensation and mold growth causing health issues
Features and findings: Ventilation - MVHR

Site inspection revealed
- Inlet and outlet grilles too close
- Clogged up inlet grille
- Dirty extract filter - schedule of installation, commissioning and frequency of maintenance
- Measured fan power higher than manufacturer claim of 0.59W/l/s

<table>
<thead>
<tr>
<th>Flat</th>
<th>State</th>
<th>Normal (W/l/s)</th>
<th>Boost (W/l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat 1</td>
<td>"As-found"</td>
<td>1.34</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>"Clean"</td>
<td>1.27</td>
<td>1.95</td>
</tr>
<tr>
<td>Flat 2</td>
<td>"As-found"</td>
<td>1.31</td>
<td>2.32</td>
</tr>
<tr>
<td>Flat 3</td>
<td>"As-found"</td>
<td>1.51</td>
<td>2.03</td>
</tr>
</tbody>
</table>
Features and findings: Communal heating system

- Central energy plant
 - Gas boilers
 - LZC tech – CHP, biomass, HP
 - Thermal stores
 - Pumps

- Secondary distribution pipework
 - Low loss header
 - Flow/return
 - Risers and ceiling voids
 - Insulated

- HIU/heat exchanger
 - Termination services cupboard
 - Space heating and DHW
 - Metering and billing
Features and findings: Communal heating system - performance

- **System efficiency**
 - Winter 2012 ~32%
 - Summer 2013 ~19%
 - Annual (Oct 2012 – Sept 2013) ~26%
 - Winter 2013 ~34%

- **2014 billing data**
 - 2,700 MWh gas consumed
 - 1,135 MWh heat metered at dwellings
 - efficiency improved slightly to 42%

- Average heat consumed per dwelling 6,602kWh/annum
Features and findings: Communal heating system - performance

- Measured data suggests:
 - Boiler efficiency ~60%
 - Distribution losses – 20-60%
 - System efficiency
 - At best ~ 50% (cold period)
 - Worst ~18% (warm period)
Features and findings: Energy use and benchmarking

- Heat and electricity use (Mar 2013 - Jun 2014) compared against SAP:

 - Lower heating demand
 - high performance fabric
 - heat gain from solar and pipework distribution losses

 - Higher fan energy due to lower MVHR fan efficiency although tempered by lower flow rates

 - Lower lighting energy
 - preference for standalone lighting (small power)
 - No strong link to good daylighting
Features and findings: Thermal comfort – causality

– Causes
 • Thermally efficient/highly-insulated façade
 • Secondary pipework (communal heating)
 o in riser
 o ceiling void
 • Flue riser
 • Services cupboard termination

– Effects
 • Heat losses from heating system conducts into internal structures and fabric
 • Warm
 o communal corridor
 o services cupboard
 • External façade barrier to heat dissipation
 o “Warm core”
 o Warm dwellings
 o Thermal comfort issues
Features and findings: Thermal comfort – dwelling heat gain

– Dwelling heat gain sources
 • “Warm core”
 • Warm services cupboard
 • Solar gains
 • Casual gains
 • Warm neighbours
 o Adjacent
 o Top and bottom

– Issues with UFH
 • High supply/return temp 60/50C
 • Insufficient underlay insulation
 • Controls issue
 • Downward radiation from slab
Features and findings: Thermal comfort – mitigation measures

<table>
<thead>
<tr>
<th>Insulation standards</th>
<th>Network heat loss kWh/annum</th>
<th>% kWh reduction in heat loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART L 2006</td>
<td>144,416</td>
<td>0</td>
</tr>
<tr>
<td>ECA & Y50 ENHANCED</td>
<td>130,174</td>
<td>10%</td>
</tr>
<tr>
<td>EN253 SERIES 1</td>
<td>120,256</td>
<td>17%</td>
</tr>
<tr>
<td>EN253 SERIES 2</td>
<td>105,171</td>
<td>27%</td>
</tr>
<tr>
<td>EN253 SERIES 3</td>
<td>89,492</td>
<td>38%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow/return °C</th>
<th>Mean water temperature</th>
<th>W/m</th>
<th>% reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>80°C / 70°C</td>
<td>75°C</td>
<td>7.5</td>
<td>-</td>
</tr>
<tr>
<td>80°C / 50°C</td>
<td>65°C</td>
<td>6.2</td>
<td>17%</td>
</tr>
<tr>
<td>80°C / 30°C</td>
<td>55°C</td>
<td>5</td>
<td>33%</td>
</tr>
</tbody>
</table>

- **Mitigation measures**
 - MVHR extract in services cupboard
 - Insulated HIU and pipework
 - Window override latch for purge ventilation
 - Communal corridor mech vent
 - Riser vent and extract
 - Air conditioning/comfort cooling?

- **Design**
 - increasing insulation levels from existing standards
 - lower flow-return temperatures of distribution pipework
Lessons learned
Lessons learned

– In relation to the communal heating system

• Tendency for system oversizing

• Lack of detailed controls documentation

• Heat network adds a large heat loss, lowers efficiency

• Risk of uneconomical CHP (higher cost of heat) as
 o not able to sell surplus electricity – micro generator
 o distribution heat loss
 o unrecoverable operational cost – higher cost of heat

• Communal heating pipework results in higher core temperature

• UFH may contribute to warming of apartments below
Lessons learned

– In relation to the dwelling occupants

• Issues with heating system
 o Misunderstanding HIU is not a boiler
 o Switching off power to the HIU supplying the controls
 o “kWh” heat charges give no easy price comparison for users

• Issues with MVHR
 o Unaware of need for filter cleaning/changing
 o Perception that MVHR ensures total comfort
 o Use of MVHR boost misunderstood

• Reluctance to open windows + sub-optimal MVHR led to thermal comfort issues

• Manufacturers manuals too technical - need a ‘quick user guide’ approach
Concluding remarks
Concluding remarks 1

- As-build U-values shown to be in line with design
- Significantly better air permeability than design
- Lower actual ventilation rates than BReg's Part F for some apartments
- Overall, the heat consumed by monitored apartments 40 to 65% less than SAP

- Communal heating system
 - various installation and controls issues led to poor performance
 - poor overall system performance partly due to distribution losses
 - could be a result of insufficient pipework installation quality and/or the standards of pipework insulation
Concluding remarks 2

– Issues affecting thermal comfort:
 • High performance external fabric ‘traps’ heat
 • Communal heating heat losses warm core
 • Low MVHR ventilation rates
 • Poor free area of openable windows
 • Insufficient external shading
 • High glazing proportion - excessive solar gain
 • Occupant reluctance opening windows

– Distribution pipework - incentive for lower f/r temperature or decentralised system?
 • dominates system capital cost
 • losses are significant (efficiency penalty)
Thank You

michael.lim@aecom.com

3 May 2018