UNDERSTANDING THE GAPS BETWEEN OPERATIONAL ENERGY USE AND MODELLING

"How Realistic is it to Predict the Operational End Energy Use of a School Using Advanced Computational Modelling?"

Hershil Patel MEng (Hons)

Yianni Spannos Associate Director

> CIBSE Building Simulation Group Friday 27th April 2012 London South Bank University

CAPITA SYMONDS

Introduction

Why Use Simulation Modelling for Operational End Energy Use Prediction?

- Financial Budgeting
- Legislation Requirements
- General Interest and Public Knowledge
- Performance Funding

CAPITA SYMONDS

Importance of Operational Energy End Use In Schools

The partnership for school issued a BSF Standard Document : PFI Agreement Payment Mechanism in February 2008:

KEY POINT: Carbon Emissions to be below 27kg CO₂/m²/ Annum for all Private Finance Initiative (PFI)

New Build Secondary Schools

partnerships for schools

building schools for the future

CAPITA SYMONDS

Medium to Evaluating Actual Operational Loads

CAPITA SYMONDS

Relationship Between Modelling, Construction and Operation

CAPITA SYMONDS

Comparative Study

Modelling and Operation

Actual Operational Data Available

- Step 1a: Confidence in Data provided
- Step 1b: Comparing Gas and Electric Loads
- Step 2: Modelling and Actual Comparison
- Step 3: Evaluating Variations

Comparative Study of Energy Consumption of Educational Developments

Graph indicates a similar distribution in energy consumption of the data sets Therefore, comfortable with the sample (data set 1) considered in this study

CAPITA SYMONDS

Energy Consumption and Carbon Emissions of Data Set 1 (Secondary Schools) Actual

Correlation of Energy Emissions and Carbon Emission followed a trend

Illustrates the ratio of power to heat was similar for Data Set 1 (Modelled Schools) Only

CAPITA SYMONDS

Energy Consumption Breakdown of Examined Population Data Set 1

CAPITA SYMONDS

Variation Between Modeled and Actual Operational Values (Maximum) of Schools A-D

CAPITA SYMONDS

Influential Variables

Simulation Modelling

Building Energy Simulation in Practice : 30th September 2009

Rokia Raslan - An Analysis of Results Variability in Energy Performance Compliance Verification Tools

Building Emissions Rate (KgCO ₂ /m²/annum)	DSM Tool I	DSM Tool II	Variance (Difference / Average) %
Building Type 1	32.6	33.7	3.3
Building Type 2	26.1	19.5	28.9
Building Type 3	52.8	39.4	29.1

The figures above are not based on any specific buildings and were for compliance proposes only.

The research evidence indicated that there may be up to a 30% variation in the 2 widely used DSM software's available

CAPITA SYMONDS

Modelling Simulation Inputs

Fixed

- Thermal Elements
- Air Permeability
- Thermal Set Points
- Equipment Types and Loads
- School Time Table
- Building Services Plant and Equipment
- Controls and Controls Strategy

Variable

- External Weather Profiles
- Window Operation Strategy
- Controls and Controls Strategy
 Implementation
- BMS Operation
- Plant Room Heating Control
- Human Behaviour

CAPITA SYMONDS

Simulated Carbon Emissions - Change in Influential Variable Inputs

CAPITA SYMONDS

Simulated Carbon Emissions - Change in Variable Inputs

CAPITA SYMONDS

Approach

Predicting Energy End Use

CAPITA SYMONDS

Predicting Energy End Use – Simplified Example

CAPITA SYMONDS

Thank You for Your Time

Hershil Patel

CAPITA SYMONDS