Modelling natural ventilation:

Small-scale experiments in water

Andy Acred

2B UNIVERSITY OF

llllll

<P CAMBRIDGE




& UNIVERSITY OF

» CAMBRIDGE

Introduction to water bath modelling

» Why experiment!

» Overview of techniques: heat & salt
Capabilities: some case studies

» Combined wind and buoyancy

» Discharge coefficient and exchange flows
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» Real-time, 3-D fluid flows

» Flow visualisation

» Capture specific flow phenomena
» Validate theory

» Push forward intuitive understanding
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Turbulent flows in which heat
(buoyancy) transport occurs
by advection

HUNT & LINDEN (2001)
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Turbulent flows in which heat

Inertia (buoyancy) transport occurs
Re = — > |03 Y advect;
Viscosity y advection
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HUNT & LINDEN (2001)
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Turbulent flows in which heat

Inertia (buoyancy) transport occurs
Re = — > |03 Y advect;
Viscosity y advection
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Diffusion Dig +
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HUNT & LINDEN (2001)




Heat in water

PARTRIDGE & LINDEN (2013)
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Heat in water

» Wires or hot plates
(no volume flux)

» Smaller density
differences

» Measurement by
thermocouples or
thermistors

Salt in water

» Direct injection of saline

» Adiabatic walls

» large density difference
(Ap/p ~ 0.2) possible

» Measurement by salinity

probes or dye attenuation
technique

» Dye & shadowsgraph visualisation




INCREASING NUMBER OF HEAT SOURCES

L —

INCREASING HEAT SOURCE AREA

Single person’

LINDEN ET AL (1990)

‘Underfloor
heating’

GLADSTONE & WOOoDS (2001)

(or ‘Chilled
celling’)
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gradients
~ Turbulent
boundary
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Flow out of enclosure through vents

COOPER & HUNT (2010)

Shorter stack.Its
height can be adjusted
from 0 - 19.5 cm by
sliding the pipe
upwards or downwards

Taller stack

Thermocouples
Bottom hole to

roof =15cm
Acrylic room model

Bottom holes of

Heating unit
various sizes

LIVERMORE & WOODS (2007)
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HUNT & LINDEN (2001)
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Multiple steady flow regimes

‘No wind’
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Multiple steady flow regimes

‘Opposing wind’

A A

Forward
displacement flow

HUNT & LINDEN (2005)



Multiple steady flow regimes

‘Opposing wind’

A A

‘No wind’

Forward
displacement flow

Reversed flow
with mixing

HUNT & LINDEN (2005)



Multiple steady flow regimes

‘ | o Time history
Opposing wind dependent

A A

‘No wind’

Forward
displacement flow

Reversed flow
with mixing

HUNT & LINDEN (2005)
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Viscous effects Inertial effects

(friction) \ / (velocity profile)
AN

Buoyancy effects Vent geometry
(density contrast)
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Holford & Hunt (2000 & 2001):
Experimental investigation of effect
of density contrast on ¢,

virtual source

) / source of saline plume

fresh water

fresh water

initially contracting discharge
/
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Increasing density contrast
AND/OR  |ncreasing vent size - Decreasing Fr

AND/OR  Decreasing flow rate
—
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HUNT & HOLFORD (2000)



Increasing density contrast
AND/OR  |ncreasing vent size - Decreasing Fr

AND/OR  Decreasing flow rate )
—

‘Normal"  Significant
unidirectional necking,
flow ~ decrease in ¢,

HUNT & HOLFORD (2000 & 2001)
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Increasing density contrast

AND/OR  |ncreasing vent size
AND/OR  Decreasing flow rate

— Ll A Ay il
}
‘Normal Significant Pulsing Steady
unidirectional - necking, | ' )
flow ~ decrease in ¢y |

HUNT & HOLFORD (2000 & 2001)

Exchange flows

HUNT & COFFEY (2010)
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Pulsing exchange flow

fresh

(@)t=2133s (b)t=21.67s (©)t=22.00s

(d)t=2233s (e) t=22.67 s () t=23.00's

HUNT & COFFEY (2010)




Steady exchange flow

saline

fresh

HUNT & COFFEY (2010)
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Increasing density contrast

AND/OR  |ncreasing vent size
AND/OR  Decreasing flow rate
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unidirectional - necking, | ' )
flow ~ decrease in ¢y |

HUNT & HOLFORD (2000 & 2001)

Exchange flows

HUNT & COFFEY (2010)
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Key advantages
» Ability to visualise real-time, 3D flows

» Ability to isolate and quantify specific flow
phenomena

Key drawbacks
»> Need specialist facility

» Difficult to recreate highly dynamic ‘real” building
scenarios, to capture daily bullding usage, weather

conditions etc.
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