Modelling natural ventilation: Small-scale experiments in water

Andy Acred

Overview

Introduction to water bath modelling

- Why experiment?
- > Overview of techniques: heat & salt

Capabilities: some case studies

- Combined wind and buoyancy
- > Discharge coefficient and exchange flows

Why experiment?

- > Real-time, 3-D fluid flows
- > Flow visualisation
- Capture specific flow phenomena
- Validate theory
- Push forward intuitive understanding

The experimental method

1:20 – 1:50 scale model

The experimental method

Building model

FULL SCALE

Heat in air

FULL SCALE

Heat in air

FULL SCALE

Heat in air

MODEL SCALE

Saline in water

FULL SCALE

Heat in air

MODEL SCALE

Saline in water

FULL SCALE

EQUIVALENT FLUID DYNAMICS

MODEL SCALE

Heat in air

Saline in water

Dye attenuation technique

Light transmittance

Salinity
Temperature
at full scale

FULL SCALE EQUIVALENT MODEL SCALE FLUID DYNAMICS

Heat in air

Heat in water

FULL SCALE

EQUIVALENT FLUID DYNAMICS

MODEL SCALE

Heat in air

Heat in water

FULL SCALE

EQUIVALENT FLUID DYNAMICS

MODEL SCALE

Heat in air

Heat in water

Partridge & Linden (2013)

Re =
$$\frac{Inertia}{Viscosity} \gtrsim 10^3$$

$$Pe = \frac{Advection}{Diffusion} \gtrsim 10^3$$

$$Ra = \frac{Convection}{Conduction} \gtrsim 10^8$$

Turbulent flows in which heat (buoyancy) transport occurs by advection

HUNT & LINDEN (2001)

$$Re = \frac{Inertia}{Viscosity} \gtrsim 10^3$$

$$Pe = \frac{Advection}{Diffusion} \gtrsim 10^3$$

Turbulent flows in which heat (buoyancy) transport occurs by advection

HUNT & LINDEN (2001)

Re =
$$\frac{Inertia}{Viscosity} \gtrsim 10^3$$

$$Pe = \frac{Advection}{Diffusion} \gtrsim 10^3$$

Turbulent flows in which heat (buoyancy) transport occurs by advection

HUNT & LINDEN (2001)

Heat in water

Partridge & Linden (2013)

Salt in water

HUNT & LINDEN (2001)

Comparison of methods

Heat in water

- Wires or hot plates (no volume flux)
- Smaller density differences
- Measurement by thermocouples or thermistors

Salt in water

- > Direct injection of saline
- > Adiabatic walls
- Large density difference $(\Delta \rho/\rho \sim 0.2)$ possible
- Measurement by salinity probes or dye attenuation technique
- > Dye & shadowgraph visualisation

Modelling heat sources

'Underfloor heating'

GLADSTONE & WOODS (2001)

(or 'Chilled ceiling')

'Single person'

LINDEN ET AL (1990)

Modelling heat sources

LINDEN ET AL (1990)

COOPER & HUNT (2010)

Chenvidyakarn & Woods (2005)

LIVERMORE & WOODS (2007)

Salt in water with a recirculating flume

HUNT & LINDEN (2001)

Multiple steady flow regimes

'No wind'

Multiple steady flow regimes

'No wind'

Forward displacement flow

Multiple steady flow regimes

'No wind'

Forward displacement flow

Reversed flow with mixing

Multiple steady flow regimes

'Opposing wind'

Time history dependent

'No wind'

Forward displacement flow

Reversed flow with mixing

$$A_{\text{effective}} = c_d A_{\text{geometric}}$$

Holford & Hunt (2000 & 2001):

Experimental investigation of effect

of density contrast on c_d virtual source source of saline plume h fresh water fresh water saline layer g_d' (Q_d, M_d, B_d) initially contracting discharge

Increasing density contrast AND/OR Increasing vent size AND/OR Decreasing flow rate

Decreasing Fr

HUNT & HOLFORD (2000)

Increasing density contrast AND/OR Increasing vent size AND/OR Decreasing flow rate

Decreasing Fr

'Normal' unidirectional flow

Significant necking, decrease in c_d

Increasing density contrast AND/OR Increasing vent size AND/OR Decreasing flow rate

Decreasing Fr

'Normal' unidirectional flow

Significant necking, decrease in c_d

HUNT & HOLFORD (2000 & 2001)

HUNT & COFFEY (2010)

Pulsing exchange flow

Steady exchange flow

Increasing density contrast AND/OR Increasing vent size AND/OR Decreasing flow rate

Decreasing Fr

'Normal' unidirectional flow

Significant necking, decrease in c_d

HUNT & HOLFORD (2000 & 2001)

HUNT & COFFEY (2010)

To conclude

Key advantages

- ➤ Ability to visualise real-time, 3D flows
- Ability to isolate and quantify specific flow phenomena

Key drawbacks

- > Need specialist facility
- Difficult to recreate highly dynamic 'real' building scenarios, to capture daily building usage, weather conditions etc.

References

Chenvidyakarn & Woods (2005) Multiple steady states in stack ventilation. Building & Environment 40, 399-410.

Cooper & Hunt (2010) The ventilated filling box containing a vertically distributed source of buoyancy. Journal of Fluid Mechanics 646, 39-59.

Hunt & Coffey (2010) Emptying boxes – classifying transient natural ventilation flows. Journal of Fluid Mechanics 646, 137-168.

Hunt & Holford (2000) The discharge coefficient - experimental measurement of a dependence on density contrast. Proceedings of the 21st AIVC Conference.

Hunt & Linden (2001) Steady-state flows in an enclosure ventilated by buoyancy forces assisted by wind. Journal of Fluid Mechanics 426, 355-386.

Hunt & Linden (2005) Displacement and mixing ventilation driven by opposing wind and buoyancy. Journal of Fluid Mechanics 527, 27-55.

Larice (2009) Classifying steady states in emptying-filling boxes. PhD Thesis, Imperial College London.

Linden et al (1990) Emptying filling boxes : the fluid mechanics of natural ventilation. Journal of Fluid Mechanics 212, 309-335.

Livermore & Woods (2007) Natural ventilation of a building with heating at multiple levels. Building & Environment 42, 1417-1430.

Modelling natural ventilation: Small-scale experiments in water

Andy Acred

