## A Structured Method for Zero Carbon Design Using Dynamic Simulation

Prof Lubo Jankovic Professor of Zero Carbon Design





Birmingham Zero Carbon House – evidence base for experimental research



#### Birmingham Zero Carbon House



- Designed by Architect John Christophers and his team
- Originally built 170 years ago
- Achieved Code for Sustainable Homes Level 6 through retrofit
- Winner of the RIBA Architecture Award 2010
- Featured extensively in the media
  - The Times "I have seen the future – and it's in Birmingham"
  - New York Times: "An English House That Generates as Much as It Consumes"





#### Zero Carbon Retrofit Research at BCU

#### The scope of work

- Thermal imaging studies
- Occupant studies
- Continuous instrumental monitoring
- Dynamic simulation experiments
- Analysis of Influence of climate change
- Recommendations for retrofit of different types of properties





#### Dynamic simulation experiments

Models of the original house and retrofit house were created, calibrated, and annual performance evaluated



#### Calibration

- Analogous to bracketing in artillery fire
- The error 'bracket' is reduced by changing the parameters of the model until desired accuracy is achieved
- Energy calibration: relative error: 0.06%
- Temperature calibration: root mean squared error < 0.95 °C</li>





#### **Energy and Carbon Performance**

|                                                    | Thermal energy (MWh/annum)    | CO2 emissions (kgCO2/annum) |
|----------------------------------------------------|-------------------------------|-----------------------------|
| Space heating energy                               | 1.78                          | 23                          |
| DHW heating energy                                 | 7.86                          | 102                         |
| Solar thermal energy                               | -4.08                         | -53                         |
| Sub-total thermal energy                           | 5.56                          | 72                          |
|                                                    |                               |                             |
|                                                    | Electrical energy (MWh/annum) | CO2 emissions (kgCO2/annum) |
| Electrical energy used                             |                               |                             |
| Electrical energy used Total electricity generated | (MWh/annum)                   | (kgCO2/annum)               |
| 9,                                                 | (MWh/annum) 2.73              | (kgCO2/annum)<br>1411       |



#### **Thermal Comfort**



|        | PMV<br>(-3 to +3) | PPD<br>(%) | Discrepancy from neutrality (%) |
|--------|-------------------|------------|---------------------------------|
| Summer | 0.09              | 5.17       | 0.17                            |
| Winter | -0.30             | 6.87       | 1.87                            |



#### **Economic analysis**





#### Design method

- Create a base model
  - Either of of the existing building (retrofit)
  - Or applying initial design principles for maximising building energy efficiency (newbuild)
- Run simulation
- Check summary results
- Use annual CO2 emissions as performance criterion
- Apply design principles for passive design and for maximising building energy efficiency, making one improvement at a time
- Save every improvement as a new model to be able to go back to previous versions for comparison
- When passive measures and energy efficiency improvements have been exhausted, apply renewable energy options one at a time
- Evaluate thermal comfort
- Calculate life cycle costs
- Repeat the above process until satisfactory outcomes are achieved in terms for CO2 emissions,
   thermal comfort and economic viability



























University

- Several principles for maximising building energy efficiency have been put in place in the initial model:
  - Response to site context
  - Building geometry
  - Thermal insulation
  - Air tightness
  - Thermal mass
  - Natural ventilation
  - Natural daylight
  - Condensing gas boiler



15 different variations of the simulation model were created and evaluated





#### improvement (kg CO2) Relative improvement (%) **Model version** Consumption emissions (kg Yearly Total Electricity (MWh) Total carbon **Total Yearly Yearly Total** Description Electricity generated (MWh) Electricity exported Absolute Heating dioxide (MWh) (MWh) (MWh) C02) 30.3 12.6 17.7 gas heating, standard insulation 11653.3 2 = a+ increased insulation 27.4 9.7 17.7 563.4 4.8% 11089.9 3 = b + increased lighting efficiency 23 12.8 10.2 7834.2 3255.7 27.9% = c + daylight sensitive controls 8.9 4 d 22.2 13.3 7200.8 633.4 5.4% 5 air source heat pump 12.4 3.6 8.8 782.6 6.7% 6418.2 = e + 52 m2 monocrystalline PV system 15% efficiency, 13.8 deg inclination from 6 3.6 2.5 3057.0 3361.2 28.8% horizontal 6.1 6.4 = f + wind generator qr5 with maximum 5.8 7 rating of 7.4 kW 3.6 2.2 6.6 2934.3 122.7 1.1% = g + 3 more wind turbines, with h 8 5.1 3.6 3.2% combined total rating of 29.6 kW 1.5 7.3 2565.8 368.5 biomass heating, boiler efficiency 93% q 22.2 13.3 8.9 e2 4931.8 1486.4 12.8% = e2 + 52 m2 monocrystalline PV system: 15% efficiency, 13.8 deg inclination from 10 horizontal 15.8 13.3 2.5 1570.7 3361.1 28.8% f2 6.4 = f2 + wind generator qr5 with maximum rating of 7.4 kW 1.1% 11 15.6 13.3 2.3 6.6 1447.9 122.8 = g2 + 3 more wind turbines, with 12 h2 combined total rating of 29.6 kW 14.9 13.3 1.6 7.3 1079.5 368.4 3.2% 13 1.5 7.3 0.8% 11.6 = h2 + super insulation 10.1 984.7 94.8 = i2 + additional 29 m2 monocrystalline PV system of 15% efficiency at 7.8 deg 14 inclination 8.2 10.1 -1.9 10.7 1.9 -830.3 1815.0 15.6% = f2 + additional 29 m2 monocrystalline

12.4

13.3

-0.9

9.8

0.9

-244.2

1814.9

# nalysis



15.6%

f3

inclination

15

PV system of 15% efficiency at 7.8 deg

#### version cost (£) period (years) gas heating, standard insulation = a+ increased insulation 10,791 = b + increased lighting efficiency 10,091 С d = c + daylight sensitive controls 9,951 5,551 air source heat pump 11 = e + 52 m2 monocrystalline PV system 15% efficiency, 13.8 deg inclination from horizontal 32,555 6 = f + wind generator qr5 with maximum rating of 7.4 3,996 21 = g + 3 more wind turbines, with combined total rating of 29.6 kW -75,999 biomass heating, boiler efficiency 93% 9 6,488 10 e2 = e2 + 52 m2 monocrystalline PV system: 15% efficiency, 13.8 deg inclination from horizontal 10 f2 33,650 = f2 + wind generator gr5 with maximum rating of 7.4 kW 4,933 11 g2 20 = g2 + 3 more wind turbines, with combined total rating of 29.6 kW 12 -75,062 h2 13 -86,799 i2 = h2 + super insulation = i2 + additional 29 m2 monocrystalline PV system of 15% efficiency at 7.8 deg inclination 14 -72.107 = f2 + additional 29 m2 monocrystalline PV system of

15% efficiency at 7.8 deg inclination

Life cycle

47,976

Payback

5

6

## analysis **Economic**



Step

Model

Description

Model 'f': PPD obtained initially was very high – closer analysis revealed that it was calculated 24/7 but the building was occupied 9-5.



# Comfort analysis





# Comfort analysis



Model 'f+': PPD obtained from simulation with with all windows openable and post-processed for 9 – 5 occupancy.



# Comfort analysis



#### Frequency of occurrence analysis of temperatures

| e interval<br>(°C) | (hours)<br>(only nat | (hours)<br>(all windows | (only nat | Model f+ (%)<br>(all windows<br>openable) |
|--------------------|----------------------|-------------------------|-----------|-------------------------------------------|
| 20                 | 4                    | 5                       | 0.2%      | 0.2%                                      |
| 22                 | 1234                 | 1225                    | 59.1%     | 58.7%                                     |
| 24                 | 593                  | 714                     | 28.4%     | 34.2%                                     |
| 26                 | 209                  | 125                     | 10.0%     | 6.0%                                      |
| 28                 | 42                   | 16                      | 2.0%      | 0.8%                                      |
| 30                 | 6                    | 3                       | 0.3%      | 0.1%                                      |

Model 'f+': only 0.9% of temperatures are greater than 28 °C



#### Designing Zero Carbon Buildings



- The first time a structured method for zero carbon design and retrofit has been published
- It integrates technical, economic, and social aspects of building performance
- It has been adopted as core text by a number of UK, US and European universities and used by consultancies such as ARUP



#### Designing Zero Carbon Buildings

- Application of well known principles
- Dynamic simulation is a pre-requisite
- Improving energy efficiency first
- Implementing renewable energy systems
- Thermal comfort analysis is essential to ensure that carbon emission reduction is not at the expense of thermal comfort
- Economic analysis of life cycle costs is essential to confirm feasibility of a design
- Conducting the process recursively until design objectives are reached
- Post occupancy monitoring of buildings is essential to calibrate simulation models



#### Conclusions

- We can do a lot on zero carbon design and retrofit before 2050
- We don't need to wait till 2016 when all new houses need to be zero carbon or till 2019 when all new buildings will need to be zero carbon
- Existing buildings represent the vast majority of the building stock: 80% of 2050 buildings have already been built
- Zero carbon design is easily possible today with existing knowledge and technology
- Advanced simulation methods are a pre-requisite
- Simulations need to be validated by instrumental monitoring
- In the future the recursive simulation analysis of technical, social and economic criteria will be replaced by optimisation algorithms

