CIBSE ASHRAE Group

Data Centre Energy Efficiency: Who, What, Why, When, Where & How

Presenters

Don Beaty PE, FASHRAE Founder, President & Managing Director DLB Associates Consulting Engineers

Paul Finch CEng, FIMechE, MASHRAE Senior Director, Technical | Design & Construction Digital Realty

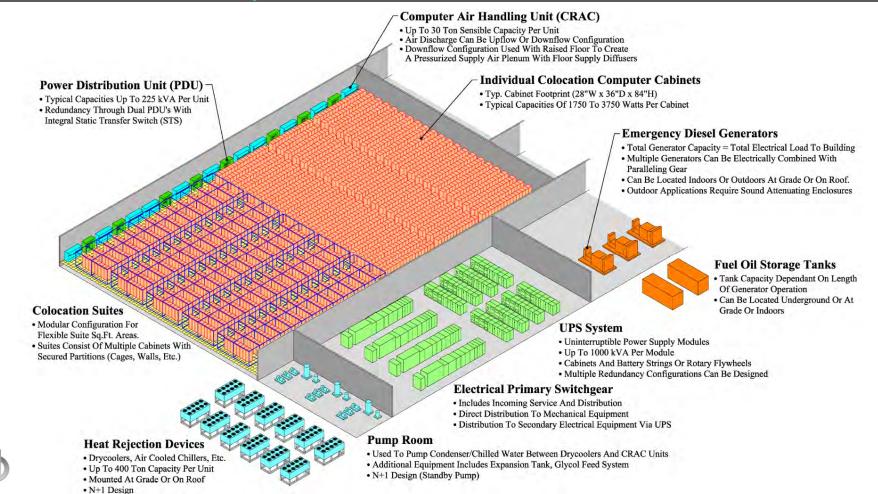
Bio's

Don Beaty has over 30 years experience in consulting engineering and founded DLB Associates Consulting Engineers in 1980. He is a licensed professional engineer in over 40 states and has international licenses as well.

Don co-founded and was the first chair of ASHRAE Technical Committee TC 9.9 and currently serves as its Publications Chair. He is a frequent keynote speaker on behalf of ASHRAE TC 9.9 for the data centre industry, having presented over 100 times and in more than 25 countries on various data centre-centric topics.

Paul Finch is a senior engineering and construction executive and has extensive global experience across the full spectrum of development management and complex engineering led capital projects and operations, with a particular focus on the design, construction and operation of data centres, technical real estate and high dependency mission critical assets and infrastructure projects, across the telecommunications, technology and banking & financial services sectors.

Paul is a Voting Committee Board Member of ASHRAE Technical Committee (TC) 9.9 - *Mission Critical Facilities, Data Centres, Technology Spaces and Electronic Equipment.*


Table of Contents

- 1. Some Data Centre Basics
- 2. Key Trends within the Data Centre Industry
- 3. Energy Standards & Regulations
- 4. Measurement of Data Centre Energy
- 5. Best Practices for Efficient Operation
- 6. Innovative Concepts & Solutions
- 7. Further Reading & Reference Publications
- 8. Q&A

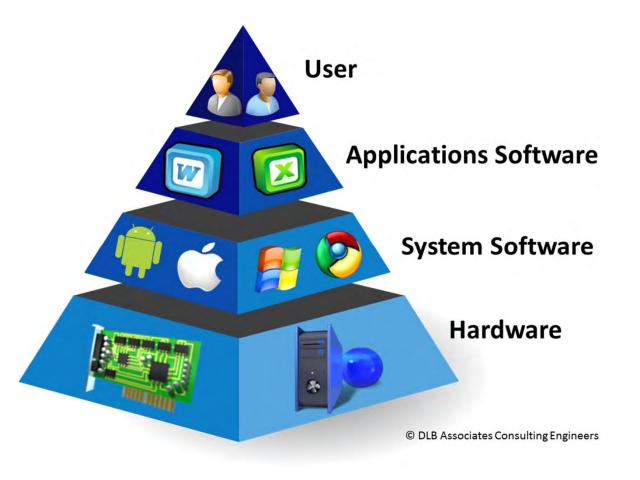
Some Data Centre Basics

Some Data Centre Basics Data Centre Graphical Overview

Some Data Centre Basics

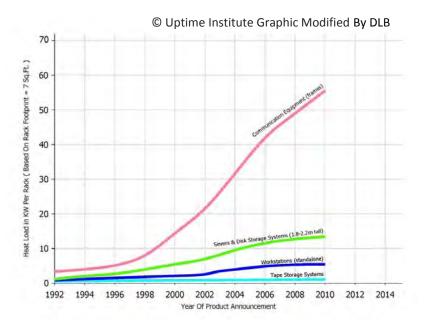
Data Centre Occupants and Fixtures, Furnishings & Equipment (FF&E)

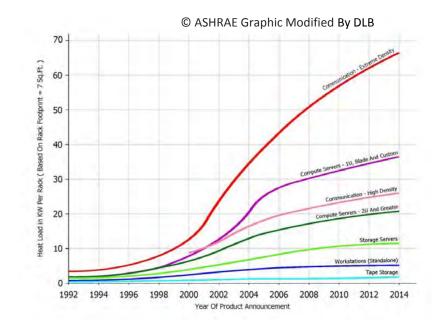
Conventional Buildings Human Occupants **Data Centres** Software Occupants



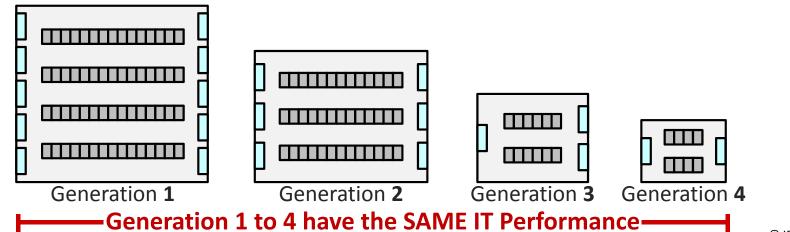
Some Data Centre Basics Server Configurations

Some Data Centre Basics


Hardware, System Software & Application Software

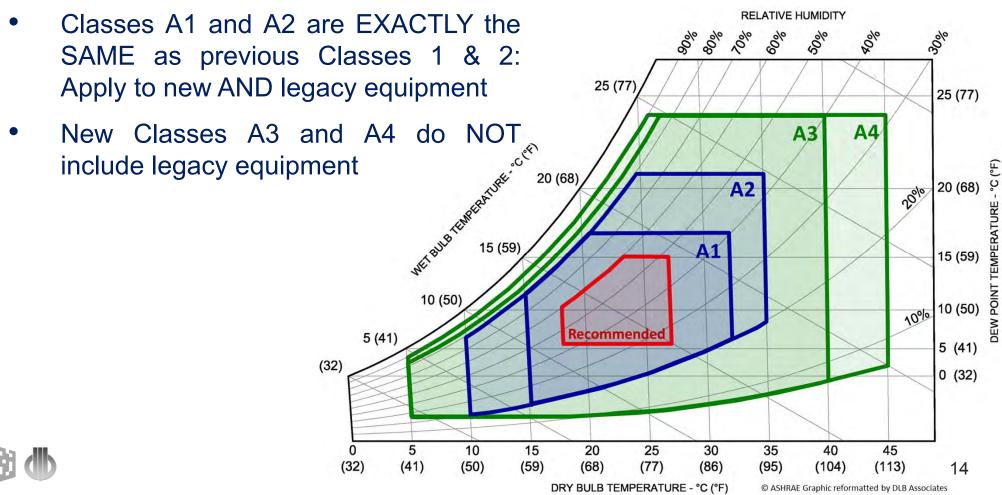


Key Trends in the Data Centre Industry 2000 & 2005 IT Equipment Power – Predictive Trends



Thermal Management Consortium in 2000: Published Through The Uptime Institute ASHRAE 2005 Publication: Datacom Equipment Power Trends & Cooling Applications

History Validated these Trends


Key Trends in the Data Centre Industry Data Center Generational Impact – 2007 to 2011

© IBM

Metric	Comparative Change (4U, 4 Processor)					
Wethe	Generation 1 (Year 1 – Baseline)	Generation 4 (Year 4)	Generation 1 to 4 Comparison			
IT Performance	100%	100%	SAME			
IT Power per Rack	100%	119%	+ 19%			
Rack Count	100% (60)	13% (8)	- 87%			
Total IT Power	100%	18%	- <mark>82</mark> %			
Space Required	100%	15%	- 85%			
Cooling Required	100%	20%	- 80%			

Key Trends in the Data Centre Industry ASHRAE Psychrometric Chart – 2011

Key Trends in the Data Centre Industry

Volume Server Power Demand & Performance Growth

Volume Server Power Demand & Performance Growth

(excludes extreme low energy servers)

Volume Server	CAGR	Growth in 3 Years	Growth in 5 Years	
Power Demand Growth	2 to 6%	5 to 20%	10 to 30%	
Performance Growth	25 to 30%	90 to 120%	200 – 250%	

Compounded Annual Growth Rate (CAGR)

Growth Projections are Rounded

Key Trends in the Data Centre Industry

Volume Server Power Trends to 2020 (fully configured, fully utilized max load)

Height	No. of Sockets	Heat Load / Chassis (Watts)			Heat Load / 42U Rack			Increase
		2010	2015	2020	2010	2015	2020	2010 to 2020
1U	1s	255	290	330	10,710	12,180	13,860	29%
	2s	600	735	870	25,200	30,870	36,540	45%
	4s	1,000	1,100	1,200	42,000	46,200	50,400	20%
2U	2s	750	1,100	1,250	15,750	23,100	26,250	67%
	4s	1,400	1,800	2,000	29,400	37,800	42,000	43%
4U	2s	2,300	3,100	3,300	23,000	31,000	33,000	43%
7U (Blade)	2s	5,500	6,500	7,500	33,000	39,000	45,000	36%
9U (Blade)	2s	6,500	8,000	9,500	26,000	32,000	38,000	46%

Market Requirements force IT manufacturers to maximize performance/volume (creating high heat load/rack). These rack heat loads will result in increased focus on improving data center ventilation solutions and localized liquid cooling solutions

High Risk to Generalize; One Shoe Definitely Does NOT Fit All

Key Trends in the Data Centre Industry

Volume Server Power Trends - Simple Adjustment Factor Example

Adjustment Factor	Volume	Heat Load / Chassis (Watts)			Heat Load / 42U Rack		
	Server Configuration	2010	2015	2020	2010	2015	2020
1.00 (Original Value)	1U, 2s	600	735	870	25,200	30,870	36,540
0.50 (Your Data Center)	1U, 2s	300	368	435	12,600	15,435	18,270

How to adjust the published Trends for your environment:

- 1) Trend Chart Value for a 1U, 2s Volume Server in 2010: 600 Watts
- 2) ACTUAL MEASURED Value for YOUR 1U, 2s Server: **300 Watts**
- 3) Calculated Adjustment Factor for YOUR 1U, 2s Server = **300 Watts / 600 Watts = 0.50**

Energy Standards & Regulations

Energy Standards & Regulations ASHRAE Standard 90.1 - 2013

- Purpose
- Scope
- Definitions, Abbreviations, and Acronyms
- Administration and Enforcement
- Building Envelope
- Heating, Ventilating, and Air Conditioning
- Service Water Heating
- Power
- Lighting
- Other Equipment
- Energy Cost Budget Method

ANSLASHRAE/IES Scandard 90,1-2013 Generation ANSI/ASHRAE/IES Scandard 90,1-2015 Fyliates MiSI/ASHRAE/IES Actients tated in Argonitie F

Energy Standard for Buildings Except Low-Rise Residential Buildings (I-P Edition)

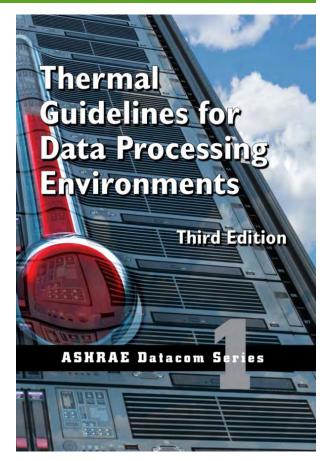
San Agencie I his graphie can be the AS-AH Section Commun. See Chinese I and al Downers, particulation of Directory and the New Contemport Section Australia

The proceed is a new restance as a community is a fact ing forward if the set Community (MC) for which the forward Community is a solution of the set of t

C 20 LANNAS IN THE THE

Energy Standards & Regulations ASHRAE Standard 127 - 2012

- Purpose
- Scope
- Definitions
- Classification
- Rating Requirements
- Conformance
- References



Energy Standards & Regulations

ASHRAE Thermal Guidelines for Data Processing Environments – 3rd Edition

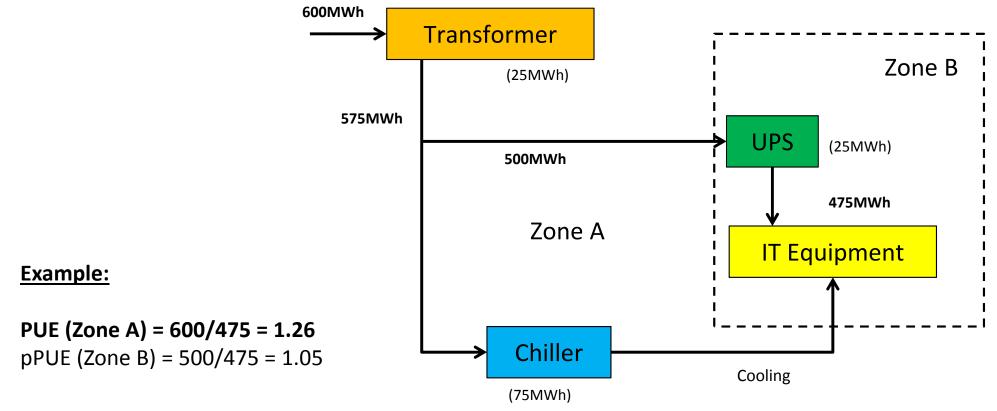
- Introduction
- Environmental Guidelines for Air-Cooled Equip.
- Environmental Guidelines for Liquid-Cooled Equip.
- Facility Temperature & Humidity Measurement
- Equipment Placement & Airflow Patterns
- Equip. Manufacturers Heat & Airflow Reporting
- Appendices A J

4

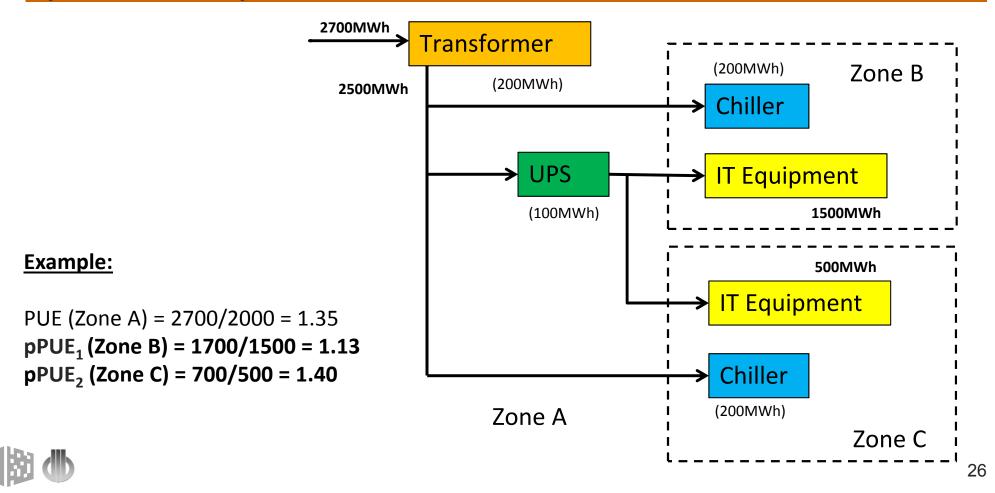
Measurement of Data Centre Energy

Measurement of Data Centre Energy PUE Basics

- PUE: Power Usage Effectiveness
- pPUE: Partial Power Usage Effectiveness
- PUE defined by The Green Grid (TGG)
- PUE is an annualised metric considering kWh not kW
- PUE can NEVER be <1.0
- PUE does NOT receive credit for waste heat repurposes
- EUE (Energy Reuse Effectiveness) does consider waste heat


Measurement of Data Centre Energy PUE & pPUE Definition

 $PUE = \frac{Total \ Facility \ Energy}{IT \ Equipment \ Energy}$


pPUE = Total Energy Inside The Boundary Total IT Equipment Energy Inside The Boundary

Measurement of Data Centre Energy PUE Example

Measurement of Data Centre Energy pPUE Example

Measurement of Data Centre Energy PUE Measurement

Three defined levels of PUE measurement being:

- PUE₁ (Level 1: Basic)
 - UPS Output, Utility Input, Monthly/Weekly
- PUE₂ (Level 2: Intermediate)
 - PDU Outputs, Utility Input, Daily/hourly
- PUE₃ (Level 3: Advanced)
 - IT Equipment Input, Utility Input, ≤15 minutes

Best Practices for Efficient Operation

Best Practices for Efficient Operation Design and Operational Opportunities

- Energy Management: measure performance, plant & equipment right-sizing.
- **Environmental Conditions:** optimise supply temperature and humidity control.
- **Air Flow Management:** improve return air management, separate hot and cold airstreams, Improve underfloor pressure management, Optimise IT cabinet airflow, Improve CRAH, CRAC, AHU efficiency.
- **Cooling Plant:** variable speed drives, cooling plant strategies, increase water efficiency, optimise pumping control, use of waste heat, optimise chilled water and condenser water supply temperatures, improve pumping efficiency, direct expansion vs. chilled water
- **Power:** improve UPS efficiency, improve transformer efficiency, minimise power distribution routes.
- **Lighting:** Improve lighting efficiency.
- IT Equipment: implement server virtualisation, optimise data storage, enable power management features, specify high efficiency power supplies, <u>IT infrastructure right-sizing.</u>

Innovative Concepts & Solutions

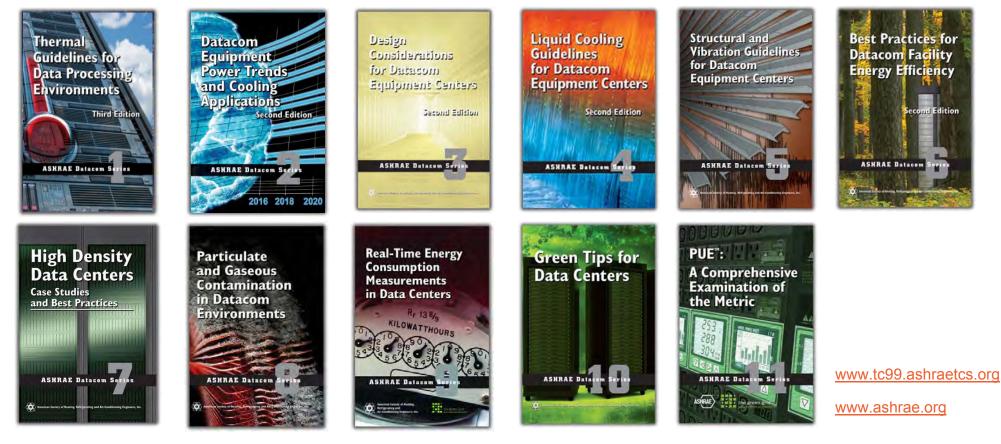
6

BR

B

BR

B BY BK BL BM BN BO BP


Innovative Concepts & Solutions Degree of Applicability Varies from Project to Project

- Thermal Guidelines for Data Processing Environments (2011) adoption of the Allowable Range & X-Factors
- Compressor-less cooling solutions
- Application of in-direct outside air
- High Performance Computing (HPC) liquid cooling technologies full oil emersion, processor heat-sink and closed-coupled heat exchangers
- Decentralised UPS
- Fine granularity phasing (e.g. one row at a time)
- Minimise the number of end-to-end voltage transitions

Further Reading & Reference Publications ASHRAE Datacom Series

348-15, 16 8 Question & Answers 59% $f_{z} = f_{0}$ •Comm ath crit · Form (a+). Conju DD (A) H Æ

THANK YOU

Don Beaty PE, FASHRAE Founder, President & Managing Director +1 732 927 5000 <u>dbeaty@dlbassociates.com</u> 265 Industrial Way West, Eatontown, NJ 07724, USA +1 732 774 2000 www.dlbassociates.com

Paul Finch CEng, FIMechE, MASHRAE Senior Director, Technical | Design & Construction +44 (0) 7984 912 258

pfinch@digitalrealty.com

Level 7, 40 Gracechurch Street, London EC3V 0BT, UK +44 (0)20 7954 9121 www.digitalrealty.com