Future heating seminar

At Hoare Lea, London, 14 Sept 2016

Homes for the Future Group

ī.

ELECTRIC

ii h

The All-Electric City

POWERING

FAST TRACK TO AN ALL-ELECTRIC CITY

AHEAD

DECEMBER 2014

METHOD

Modelled London progress predicted (Pathway Alpha)

Modelled An All-Electric Future

\rightarrow Air Quality

 $\rightarrow CO_2$

- Collated London Atmospheric Emissions Index Modelled progress as usual
- Modelled all-electric future

RESULTS-CO₂ EMISSIONS

RESULTS-AIR QUALITY

NO₂ 2030 – TRAJECTORY

NO₂ TODAY

NO₂ 2030 – ALL ELECTRIC

RECOMMENDATIONS (BUILDINGS)

1. New developments to be all-electric

- Reduce CO₂ emissions
- Immediately reduce air pollution
- Reduce risk of overheating

2. Existing Stock - Efficiency / electric heating

- Reduce long term CO₂
 - Reduce energy bills

WHY ARE ALL-ELECTRIC CITIES BETTER?

LARGE CO₂ EMISSIONS REDUCTIONS

LARGE CO₂ EMISSIONS REDUCTIONS

Arup – CIBSE Symposium 2016

Figure 5: Future projections for electrical grid carbon intensity and effect on carbon factors from heat supplied by gas CHP and heat pumps [15].

LARGE CO₂ EMISSIONS REDUCTIONS

Keepmoat – CIBSE Journal 2016

Carbon ranking	2012 emissions (tCO ₂ /home) with grid intensity 519g CO ₂ /kWh		2016 emissions (tCO ₂ /home) with grid intensity 288g CO ₂ /kWh	
Low carbon	Gas CHP district heat	1.74	ASHP heat and DHW	1.15 🛧
	ASHP heat and DHW	2.07	ASHP heat, direct DHW	1.53 ↑↑↑
	Local gas boilers	2.13	Local gas boilers	1.67 -
	Gas boiler DH	2.40	Electric storage heat	1.87 🛧
	ASHP heat, direct DHW	2.72	Gas boiler DH	1.94 🔸
Highest carbon	Electric storage heat	3.37	Gas CHP district heat	2.06 \\
Carbon ranking	2025 emissions (tCO ₂ /ho with grid intensity 165g	ome) CO₂/kWh	2035 emissions (tCO ₂ /ho with grid intensity 65g C	me) O₂/kWh
Carbon ranking Low carbon	2025 emissions (tCO ₂ /ho with grid intensity 165g ASHP heat and DHW	ome) CO₂/kWh 0.66	2035 emissions (tCO ₂ /ho with grid intensity 65g Co ASHP heat & DHW	me) O₂/kWh 0.26 -
Carbon ranking Low carbon	2025 emissions (tCO ₂ /ho with grid intensity 165g ASHP heat and DHW ASHP heat, direct DHW	ome) CO ₂ /kWh 0.66 0.87	2035 emissions (tCO ₂ /ho with grid intensity 65g Co ASHP heat & DHW ASHP heat, direct DHW	me) O₂/kWh 0.26 - 0.34 -
Carbon ranking Low carbon	2025 emissions (tCO ₂ /ho with grid intensity 165g ASHP heat and DHW ASHP heat, direct DHW Electric storage heat	ome) CO₂/kWh 0.66 0.87 1.07 ↑	2035 emissions (tCO ₂ /ho with grid intensity 65g Co ASHP heat & DHW ASHP heat, direct DHW Electric storage heat	me) O₂/kWh 0.26 - 0.34 - 0.42 -
Carbon ranking Low carbon	2025 emissions (tCO ₂ /ho with grid intensity 165g ASHP heat and DHW ASHP heat, direct DHW Electric storage heat Local gas boilers	ome) CO₂/kWh 0.66 0.87 1.07 ↑ 1.42 ↓	2035 emissions (tCO ₂ /ho with grid intensity 65g C ASHP heat & DHW ASHP heat, direct DHW Electric storage heat Local gas boilers	me) O₂/kWh 0.26 - 0.34 - 0.42 - 1.22 -
Carbon ranking Low carbon	2025 emissions (tCO ₂ /ho with grid intensity 165g ASHP heat and DHW ASHP heat, direct DHW Electric storage heat Local gas boilers Gas boiler DH	ome) CO₂/kWh 0.66 0.87 1.07 ↑ 1.42 ↓ 1.69	2035 emissions (tCO ₂ /ho with grid intensity 65g C ASHP heat & DHW ASHP heat, direct DHW Electric storage heat Local gas boilers Gas boiler DH	me) O ₂ /kWh 0.26 - 0.34 - 0.42 - 1.22 - 1.49 -

THEY ARE FUTURE READY - OVERHEATING

THEY IMPROVE ENERGY SECURITY

THEY ARE FLEXIBLE

THEY LOVE EFFICIENCY

THEY WILL SOLVE OUR AIR QUALITY PROBLEMS

THEY ARE INEVITABLE

- Provide 21.2% of heat

- Reduce CO_2 by 0.8MTCO₂ (~2%)

GLA 2014 Secondary Heat Networks / Heat Pumps Can provide 100% of heat 50TWh from secondary source 21TWh from heat pump CoP 3.3

CHALLENGES FOR ALL-ELECTRIC CITIES

→ Peak power demand

Improving efficiency of building stock

-> Short-term Policy - National/Local, Part L

SUMMARY

All-Electric Cities

Massively reduce CO₂ emissions
Reduce air pollution
Are flexible
Love efficiency
Are future ready
Are Inevitable

Much better places to live and work

Powering ahead Fast track to an allelectric city

Barny Evans MCIBSE Barny.evans@wspgroup.com

F

LECTRIC

September 2016