CIBSE/ASHRAE Group Meeting 08 December 2004

#### **Underfloor Air Conditioning in North America**

**David Arnold** 

Troup Bywaters + Anders/

**Director and Regional Chair ASHRAE Region at Large** 

### UFAC/UFAD in North America

- Earliest systems date from mid 80s
- Interest re-fuelled by increased use of raised access floors mid 90s on
- Design practice differs from Europe and UK
- Featured in LEED low energy projects
- Increasingly popular at ASHRAE meetings

#### Hewlett Foundation Headquarters

#### Menlo Park, California



| Owner:               | The William and Flora Hewlett Foundation |                                                                           |  |  |  |
|----------------------|------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| Project Team:        | Architect:                               | B.H. Boccok AIA Architect, Inc.<br>Hawley Peterson & Snyder<br>Architects |  |  |  |
|                      | Manager:                                 | Bennington/Conover & Assoc.                                               |  |  |  |
|                      | Landscape:                               | The Office of Cheryl Barton                                               |  |  |  |
|                      | Contractor:                              | Vance Brown Builders                                                      |  |  |  |
|                      | Consultant:                              | Simon & Associates                                                        |  |  |  |
| Building Statistics: |                                          |                                                                           |  |  |  |
| Completion Date:     | May 2002                                 |                                                                           |  |  |  |
| Cost:                | \$                                       |                                                                           |  |  |  |
| Size:                | 48,000 gross square feet                 |                                                                           |  |  |  |
| Footprint            | 24,500 square feet                       |                                                                           |  |  |  |
| Construction Type:   | New Construction, Type V Office Building |                                                                           |  |  |  |
| Use Group:           | Non-profit                               |                                                                           |  |  |  |
| Lot Size:            | 6.8 acres                                |                                                                           |  |  |  |
| Annual Energy Use:   | 96.45 kBtu/sf/year                       |                                                                           |  |  |  |
| Occupancy:           | 110 Staff                                |                                                                           |  |  |  |



#### Version 2.0 Gold

#### Sustainable Sites

- Alternative Transportation: Served by three bus lines within ¼ mile, linking building to fixed rail station; bike racks and shower facilities for bicycle commuters; preferred carpool parking in underground garage
- Reduced Site Disturbance: 60% of site retained as open space
- Stormwater Management: Bioswales and detention pond ensure no net increase in stormwater runoff, storm drains are filtered to remove TSS & TP
- · Reduced Heat Islands: Light colored, non-petroleum based paving surfaces.

#### Water Efficiency

 Water Efficient Landscaping: Native and drought tolerant vegetation with drip irrigation reduce water usage over 50%

#### Energy and Atmosphere

- Optimize Energy Performance: Exceeds CA Title 24 by 35%; strategies include underfloor HVAC, thermal energy storage, photovoltaic roof panels, and daylighting. Additional commissioning further optimized systems.
- Ozone Depletion: No HCFCs or Halon
- Measurement & Verification: Continuous measurement at device/system level.

#### Materials and Resources

- Construction Waste Management: 69% of debris recycled
- Recycled Content: 64% of materials (by cost) contain recycled content
- Local/Regional Materials: 40% of materials (by cost) is manufactured within 500 miles of project site.
- · Certified Wood: 82% of total wood is FSC certified (exemplary performance)

#### Indoor Environmental Quality

- Construction IAQ Management Plan: Two week flush-out after construction and before occupancy
- Low-Emitting Materials: Low/no VOC adhesives, sealants, paints, carpet and composite wood.
- Controllability of Systems: Operable windows, task lighting, motion sensors and underfloor air diffusers.
- Daylight & Views: All regularly occupied spaces have access to exterior views; strategies include skylights, glazed partitions and doors, lightwells and celestory windows.

#### Innovation & Design Process

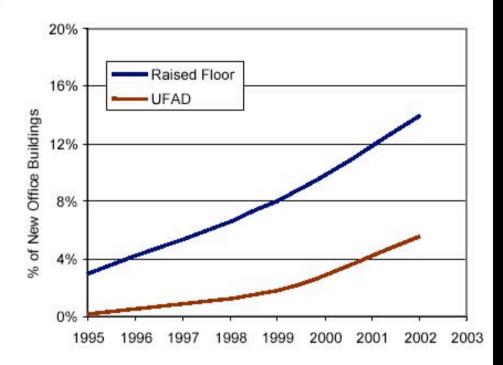
 Innovation in Design: Green housekeeping; green building presentation and tour as a teaching tool; used asphalt alternative for over half of total paving.

# Background



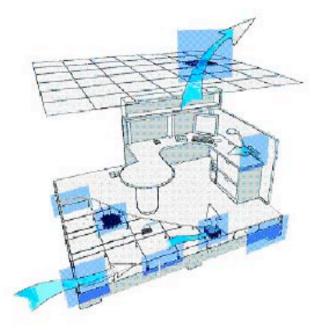


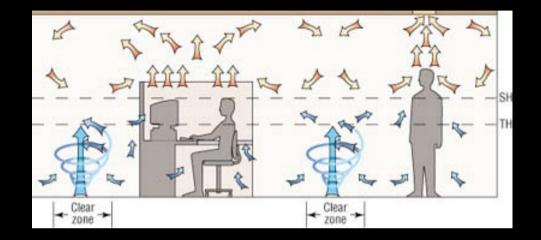



# Background

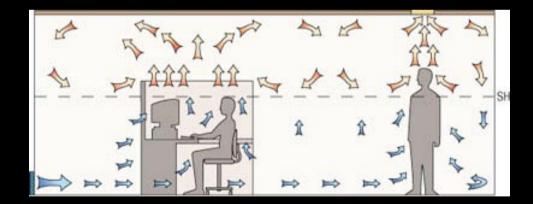





#### **Raised floor and UFAD adoption**


- 1995: Less than 3% of new office buildings had raised floors, UFAD a "fringe" element
- 1999: 8% of new offices used raised floors, 20-25% of these with UFAD systems.
- 2002: 12% -15% have raised floors, +/- 40% of these with UFAD systems.




#### Hype vs. reality

"UFAD systems provide improved flexibility for building services, allowing for fast and inexpensive reconfigurations, and accommodating the high churn rates of the modern workplace."





#### Underfloor Mixing Supply



Sidewall displacement supply

## Reality v. Hype (J. Woods)

- $\checkmark$  65 buildings identified with UFAD systems
- ✓ Size from 2K to 3M sq ft, but % UFAD generally less than total floor area
- ✓ 30% new construction
- Non-compliance with relative humidity and air movement frequently reported,
- System problems included insufficient latent heat capacity, lack of controllability of temperature, pressurization, and compartmentalization,
- Energy and first cost justifications were not validated,

# Types and Variations of Current UFAD Systems

#### Supply Air

#### **Positive Pressure Plenum**

- > Unducted, "Push" Type
- ✓ Diffusers & Grilles
- ✓ VAV Units

#### <u>"Neutral" Pressure Plenum</u>

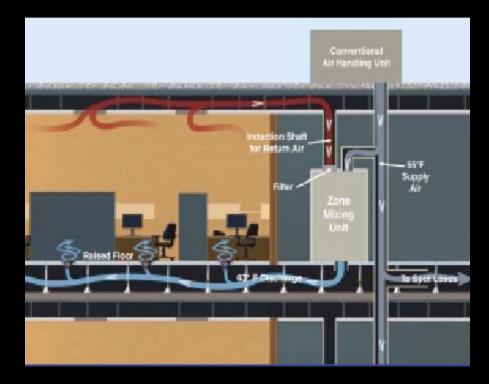
- Ducted to VAV or FC Units
- > Unducted, "Pull" Type
- ✓ Fan-powered VAVs
- ✓ Fan Coil Units
- ✓ Fan-powered diffusers & Grilles

#### **Return Air**

#### **Ceiling Plenum**

- > Ducted
- > Partially Ducted
- > Unducted

#### High Sidewall Grilles


- Ducted or unducted to Ceiling
- Ducted to VAV or FCU in Floor

#### Floor Plenum

- Ducted from Kiosk to VAV or FCU
- > Ducted from Grille to VAV or FCU
- > Membrane to separate floor

plenum for supply and return

## Hardware in N. America











## Design Process

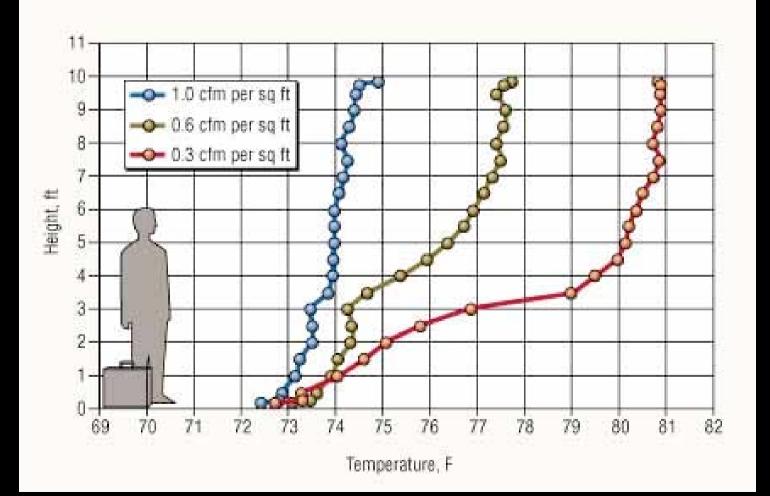
- <u>http://www.cbe.berkeley.edu/underfloorair/Default.htm</u>
- Underfloor air distribution (UFAD) design guide. Bauman, F. (2003). Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers.

## Design Process

- Building Design Considerations
- Select System Configuration
- Space Cooling and Heating Loads
- Zoning
- Ventilation Air Requirements
- Zone Supply Air Temperature & Flow Rate
- Return Air Configuration
- Cooling Coil Load
- Layout ducts and plenum configuration
- Select Primary HVAC Equipment

#### **Building Design Considerations**

- Slab floor to floor heights
- Ceiling void required?
- Plenum depth available
- Air tightness of building


## **Select System Configuration**

- Pressurised plenum central air handlers
- Low pressure plenum displacement
- Zero pressure plenum local fan units
- Ducted outlets

# Zoning

- Perimeter < 5.0 m x 6m
- Interior  $< 80 \text{m}^2$
- Smoke Barriers <400m<sup>2</sup>

# **Return Air Configuration**



### **Construction Phase Guidelines**



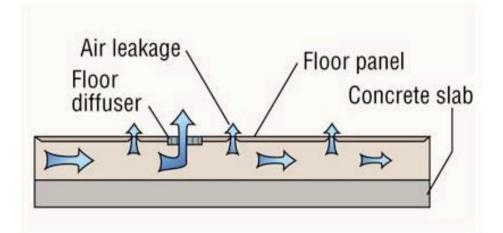
#### **Construction Phase Guidelines**

- Underfloor air distribution (UFAD) systems require good coordination between all building trades throughout the design and construction process.
- It is essential that the implications of the raised access floor be considered early in the design process.
- It is important to lay out underfloor equipment requiring regular maintenance to be located in accessible areas, such as corridors, not underneath furniture and partitions.

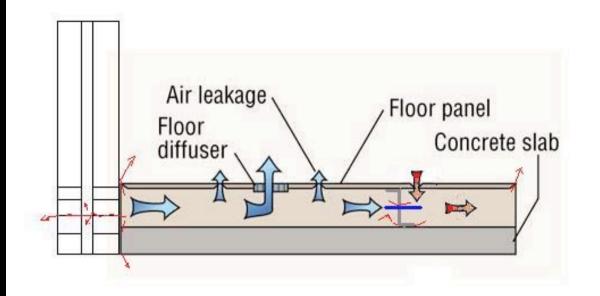
#### **Construction Phase Guidelines**

- Determine areas in the building with no access floor and allow for transitions to areas with access flooring.
- In pressurized underfloor air distribution systems, greater care must be taken during construction to seal the underfloor plenum to prevent uncontrolled air leakage.
- The main structural slab, the traditional working platform, will not be available continuously during construction, and therefore a well coordinated construction sequence is necessary

# Testing and Balancing


# Testing and Commissioning

- CIBSE Commissioning Code A: Air distribution systems
- CIBSE Commissioning Code W: Water distribution systems
- CIBSE Commissioning Code W: Water distribution systems
- BSRIA Commissioning HVAC Systems: Guidance on the division of responsibilities
- BSRIA Commissioning air systems. Application procedures for buildings
- BSRIA Air tightness testing


### **Testing and Balancing**

- Design Supply air Temperatures 16 to 21<sup>o</sup>C
- Typical Temperature Pick Up 3 K\*
- Range: 1.0 to 3.7K
- Plenum Pressure 10 to 20 Pascal
- Leakage:
  - -5Pa13.5 16%
  - –15Pa 41%

\* If supply – return DT = 6K and above temperature pick up and leakage apply then cooling capacity at outlets will be (6 - 3)/6 \* (100 - 41)/100 = 29.5% of design.



One major cause of uncontrolled air leakage from pressurized plenums is leakage between floor panels.



One major cause of uncontrolled air leakage from pressurized plenums is leakage between floor panels.

| Floor<br>(with carpet) | Linear<br>coefficient | Exponent | Net<br>Leakage<br>at 7 Pa | Net<br>Leakage<br>at 12.5<br>Pa | Net<br>Leakage<br>at 25 Pa | Normalised<br>leakage at<br>25 Pa     |
|------------------------|-----------------------|----------|---------------------------|---------------------------------|----------------------------|---------------------------------------|
|                        | а                     | n        | (l.s <sup>-1</sup> )      | (l.s <sup>-1</sup> )            | (l.s <sup>-1</sup> )       | (l.s <sup>-1</sup> .m <sup>-2</sup> ) |
| Hewetson               | 1.2564                | 0.7374   | 5.3                       | 8.1                             | 13.5                       | 0.69                                  |
| Tate                   | 0.4365                | 0.8009   | 2.1                       | 3.3                             | 5.7                        | 0.30                                  |

|                            | m <sup>3</sup> .h <sup>-1</sup> .m <sup>-2</sup> at<br>100 Pa | m <sup>3</sup> .h <sup>-1</sup> .m <sup>-2</sup> at<br>50 Pa |
|----------------------------|---------------------------------------------------------------|--------------------------------------------------------------|
| HVCA Class A ductwork      | 0.41                                                          | 0.29                                                         |
| HVCA Class B ductwork      | 1.94                                                          | 1.37                                                         |
| BSRIA very good building   | 3.54                                                          | 2.5                                                          |
| BSRIA good building        | 7.07                                                          | 5.0                                                          |
| Average UK office building | 30.83                                                         | 21.8                                                         |

#### Floor Voids (Ventilation Plenums)

Where floor voids are used for ventilation plenums as used in displacement ventilation systems, the BSRIA recommended air tightness criteria should remain as 1 litre per second per square metre of floor area.

NB. This rate of air leakage is ten times that allowed for low pressure ductwork in DW 144

- Testing plenums once installed is relatively easy.
- This may be too late in practical terms the Building Leakage should be satisfied before the raised access floor is laid

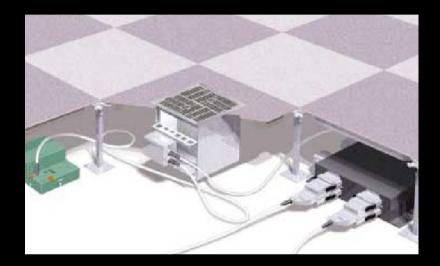
### Temperature Pick up

- Temperature pick up in underfloor voids is largely related to distance.
- US advice varies between maximum distances of 7 to 15m. The shorter the distance the better.
- When the underfloor void is an air duct the temperature rise can be calculated easily.
- In open plenums it is more difficult to predict. CFD could be used.
- Rule of thumb 1 to 2K per 10m

## Who is responsible?

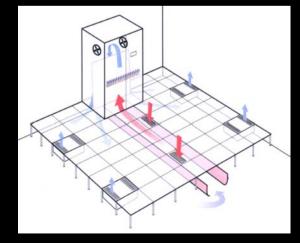
- Specifying ventilation related performance requirements of plenum?
- Management of sequence of installation?
- Construction quality of underfloor plenums and air pathways?
- Testing and Balancing underfloor plenums and air pathways?

## Maintenance of UFAD


- Duct Hygiene
  - Dirt traps
  - Higher rate of dust collection



# Energy Efficiency

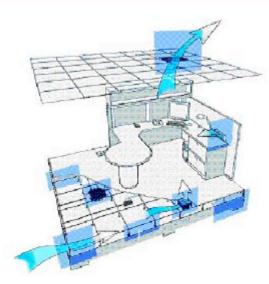

- Lower fan energy
- Higher mean temperature in space
- Thermal storage (exposed ceiling)
- Overnight cooling?
- Plenum losses?

## UFAD in the UK












# Reality v. Hype (D.Arnold)

#### **Potential UFAD benefits**

- Improved flexibility for building services
- 2. Improved ventilation efficiency and indoor air quality
- Improved occupant comfort, productivity and health
- 4. Reduced energy use
- 5. Reduced life-cycle building costs
- Reduced floor-to-floor height in new construction

