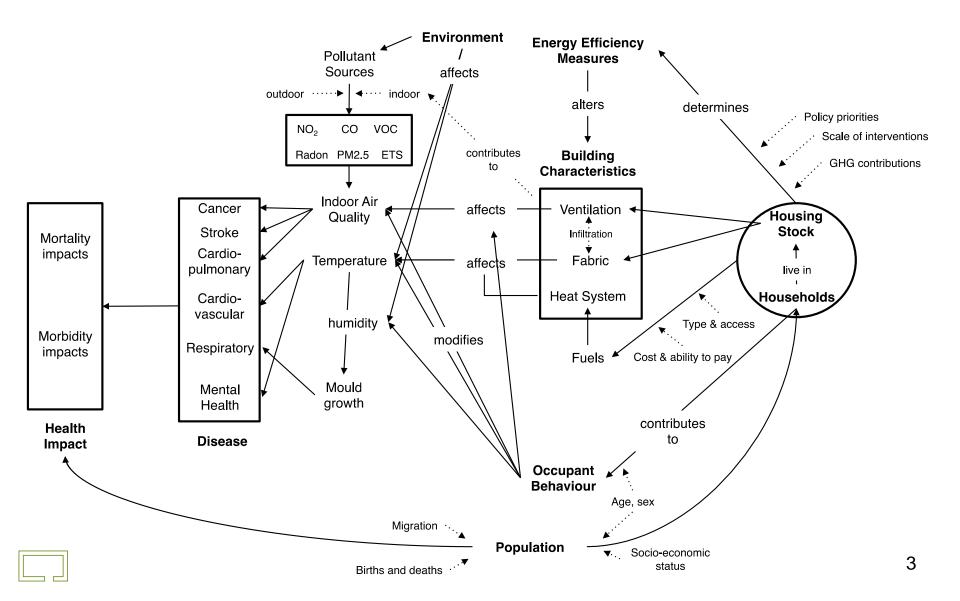
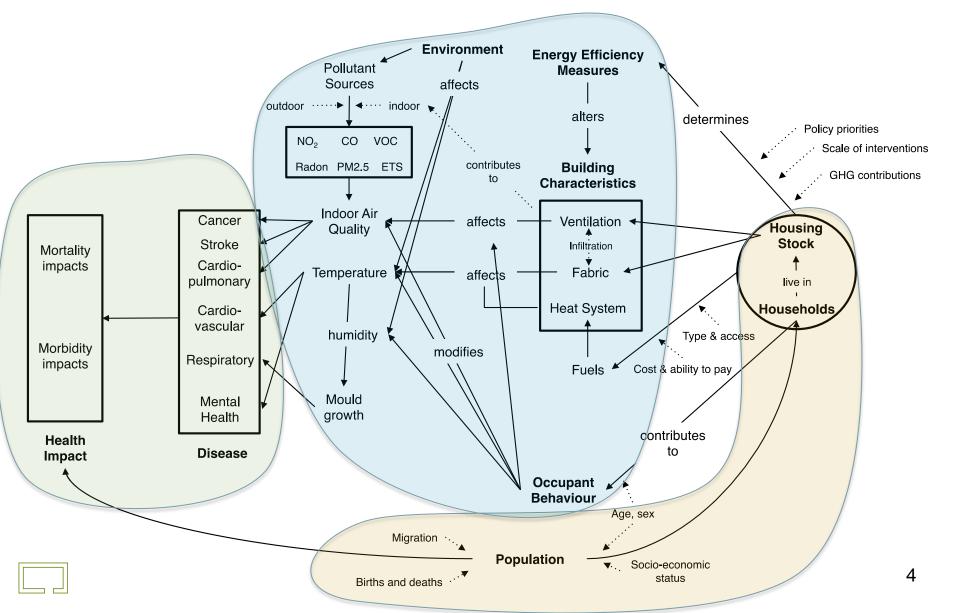
Modelling the effects of adaptions to the English housing stock on health

Phil Symonds

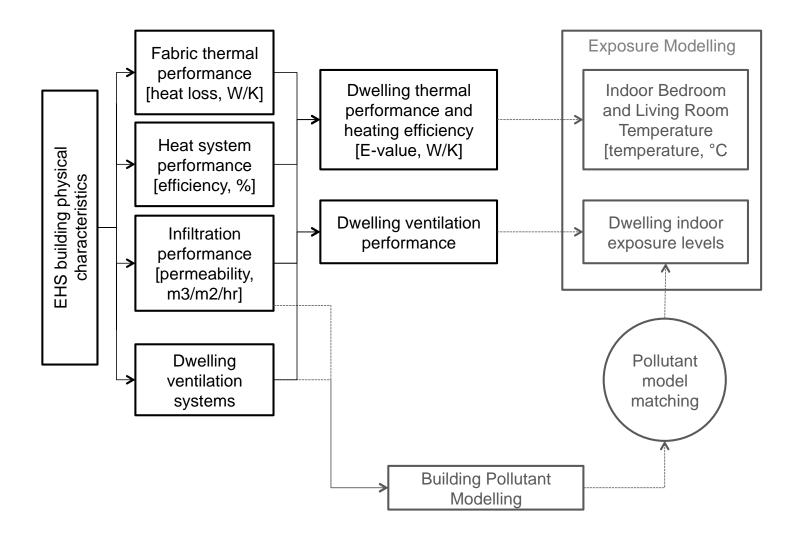

Aim: Model the impacts of adaptations to the domestic building stock on health (mortality and morbidity)

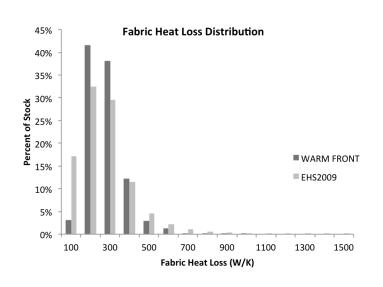
Outline:

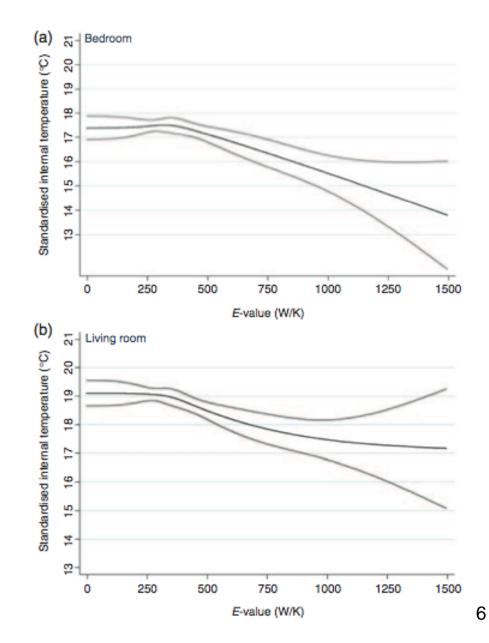
- Within the IEDE and EI, we have developed several models in collaboration with LSHTM over recent years
- HIDEEM Health Impact of Domestic Energy Efficiency
 Measures
- Effect of energy efficient retrofit on indoor/outdoor pollutants and cold on health (life-tables)
- AWESOME: Modelling of postcode-level overheating and indoor air pollution exposure
- *Microsimulation* An alternative to life-table methods



Pathways of energy efficiency and health impact

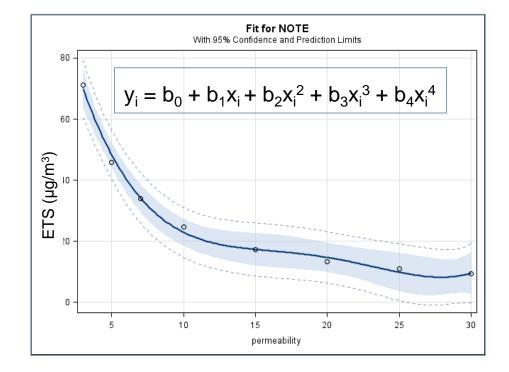

Pathways of energy efficiency and health impact


Building efficiency modelling


Estimates of fabric heat loss, heating system, ventilation heat loss and overall energy performance are made using a SAP like model.

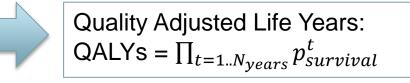
Building efficiency modelling 'WARM FRONT'

Internal temperatures are predicted using a relationship between the whole house efficiency (fabric, ventilation and heat system) and indoor temperature (Oreszczyn et al, 2006).



Pollutant modelling (in CONTAM)

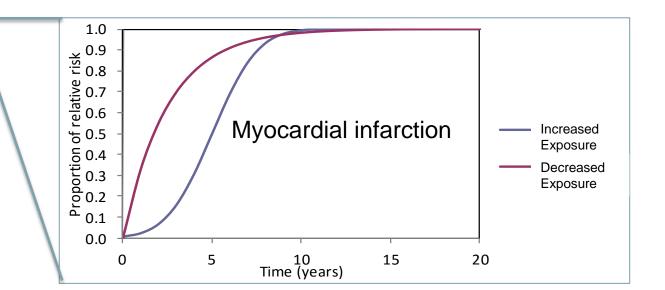
- Eight dwelling archetypes
- Four occupancy types
- Five ventilation strategies:
 - No trickle vents or extract fans (Window opening)
 - Trickle vents and extract fans
 - Trickle ventilation
 - Extract fans
 - Mechanical ventilation with heat recovery systems (MVHR)



Models were constructed with permeability values of 3, 5, 7, 10, 15, 20, 25 and 30 m³/m²/hr at 50 Pa representing an estimate of the UK range (Stephen 2000). MVHR scenarios were run at a permeability of 3 m³/m²/hr at 50 Pa.

Health modelling

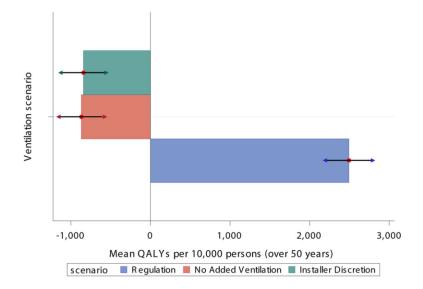
Mortality - Life tables (ONS data): $p_{survival}(age, sex) = 1 - N_{deaths}/N_{pop}$



x Time-lagged relative risk

Exposure-response relationship

Morbidity:

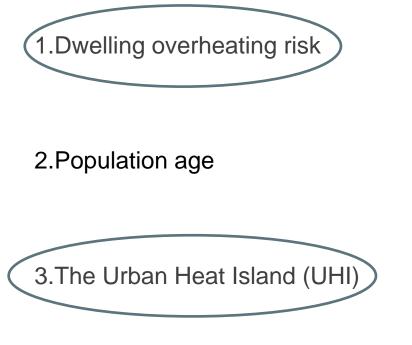

 determined using a scaling factor : Years of life with disease/Years of life lived

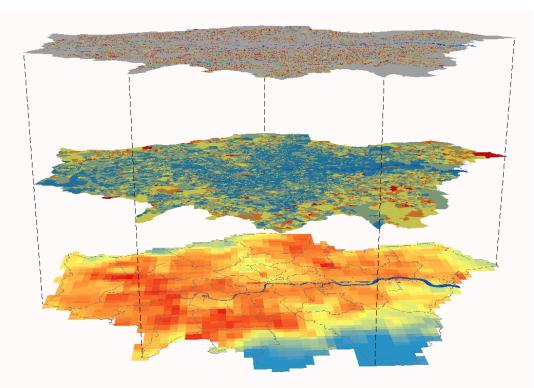
Results (published in Hamilton et al. 2015)

- Health impact of 2030 Carbon reduction targets with:
 - Regulation ventilation (trickle vents and extract fans)
 - Installer discretion (trickle vents and extract fans installed ~6%)
 - No purpose provided ventilation

	Baseline	Experiment ventilation scenarios			
	Intervention stock	Regulation	Installer discretion	No added ventilation	
Sample		N			
Dwellings (1000s)		18 990	17 350	17 320	
People (1000s)		44 740	41 130	41 060	
Building characteristics		Mean (SD*)			
Fabric heat loss (W/K)	294 (167)	219 (120)	213 (115)	213 (116)	
Ventilation heat loss (W/K)	75 (45)	70 (42)	51 (35)	50 (33)	
Heat system efficiency (%)	76 (12)	88 (11)	89 (10)	89 (10)	
Permeability (m ³ /m ² /h)	16 (5)	11 (5)	11 (5)	11 (5)	
Exposure†		Mean (95% credibility intervals)			
Standardised indoor temperature‡ (°C)	17.8 (0.7)	18.1 (18.1, 18)	18.1 (18.1, 18.1)	18.1 (18.1, 18.1)	
STS§	0.5 (0.4)	0.5 (0.5, 0.4)	0.7 (0.7, 0.6)	0.7 (0.7, 0.7)	
Indoor¶ PM _{2.5} (µg/m ³)	9.4 (5.4)	4.6 (4.4, 4.2)	10.6 (10.1, 9.6)	11 (10.5, 9.9)	
Outdoor PM _{2.5} (µg/m ³)	6.2 (1.7)	6.8 (6.5, 6.2)	5.9 (5.6, 5.3)	5.8 (5.5, 5.2)	
Radon (Bq/m ³)	22.9 (14.1)	22.4 (20.3, 20.1)	34.2 (30.7, 30)	35 (31.3, 30.7)	
Mould (% with MSI >1)	ould (% with MSI >1) 14.9 (7.5)		12.3 (11.6, 11) 18.5 (17.8, 16.2)		
Heating energy (MWh/year)	22.9 (10.4)	16.6 (16.4, 16.3)	15.7 (15.6, 15.4)	15.6 (15.5, 15.4)	

⁹ See also <u>Shrubsole et al. 2015</u>: A tale of two cities: Comparison of impacts on CO2 emissions, the indoor environment and health of home energy efficiency strategies in London and Milton Keynes

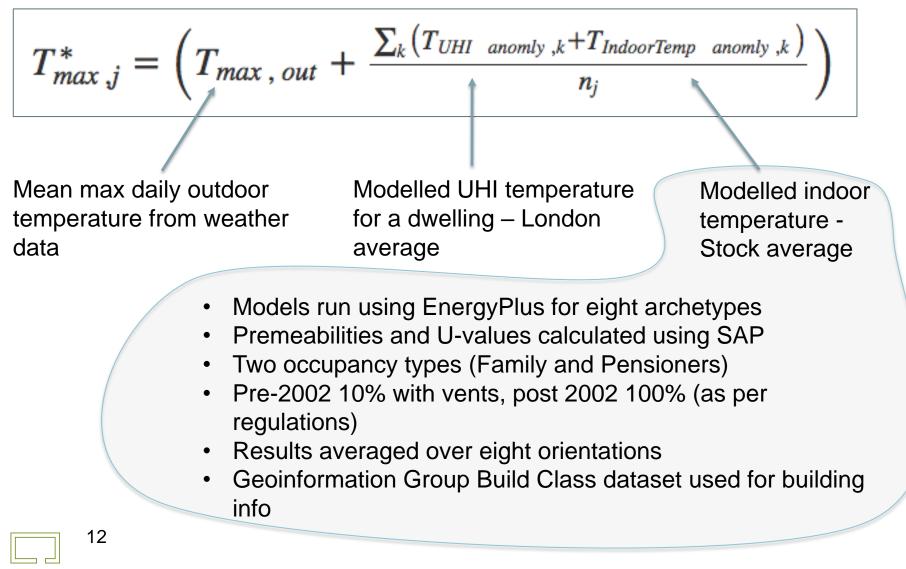



HIDEEM is now included as a module within the NHM

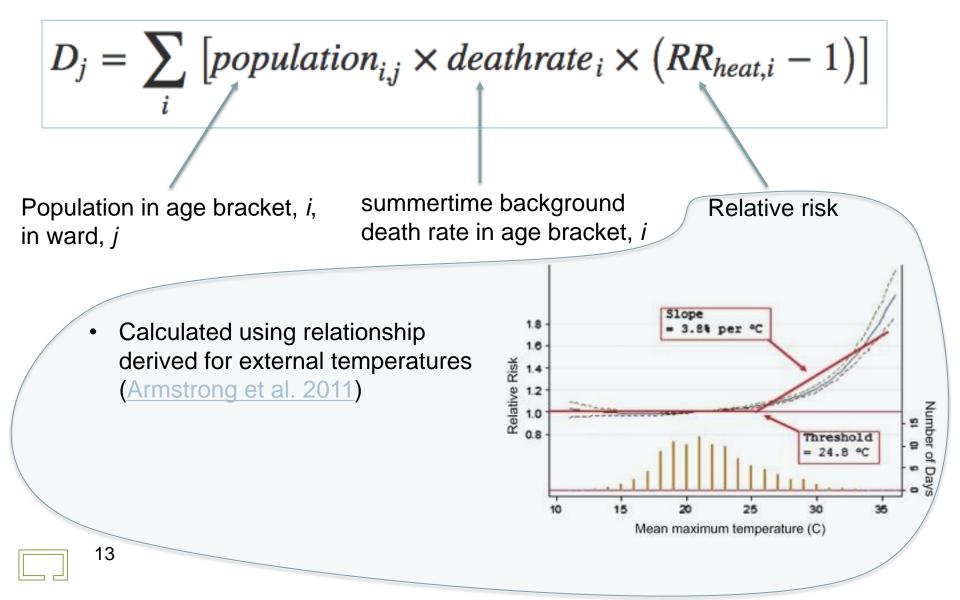
National Household Model

Overheating in homes

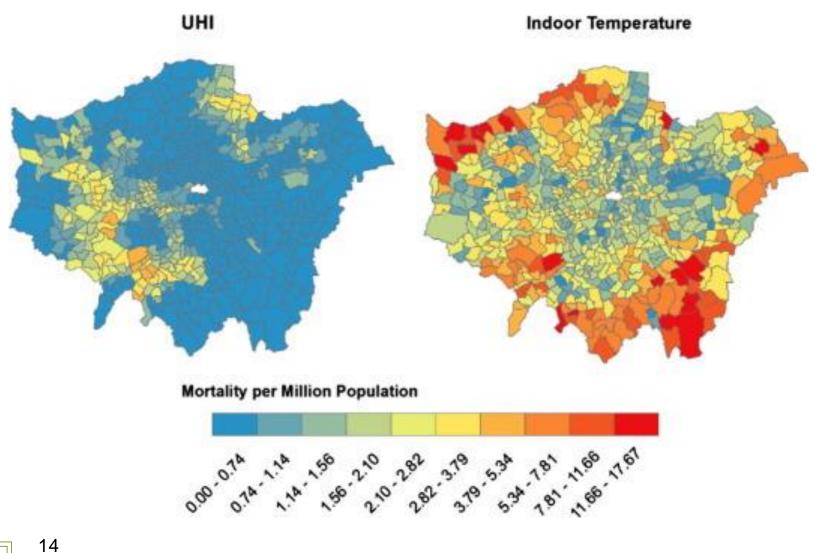
- Method developed under the AWESOME and HPRU projects
- Overheating risks are associated to:



Overlaid maps from Taylor et, 2015


Methods

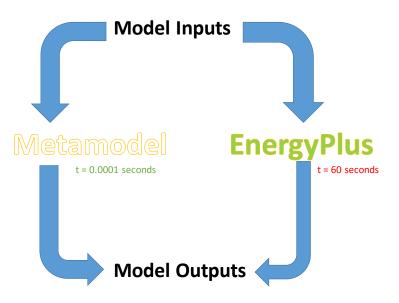
1) Calculate the mean maximum temperature for a ward, *j*:

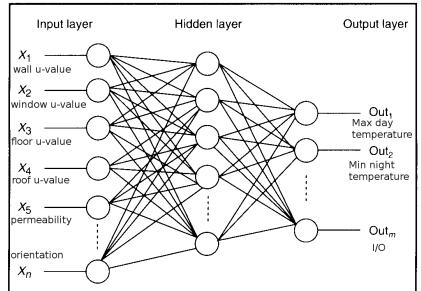


2) Mortality summed over all individuals, *i*, in ward, *j*, is calculated:

Results

Further work is currently underway to extend and improve these models...

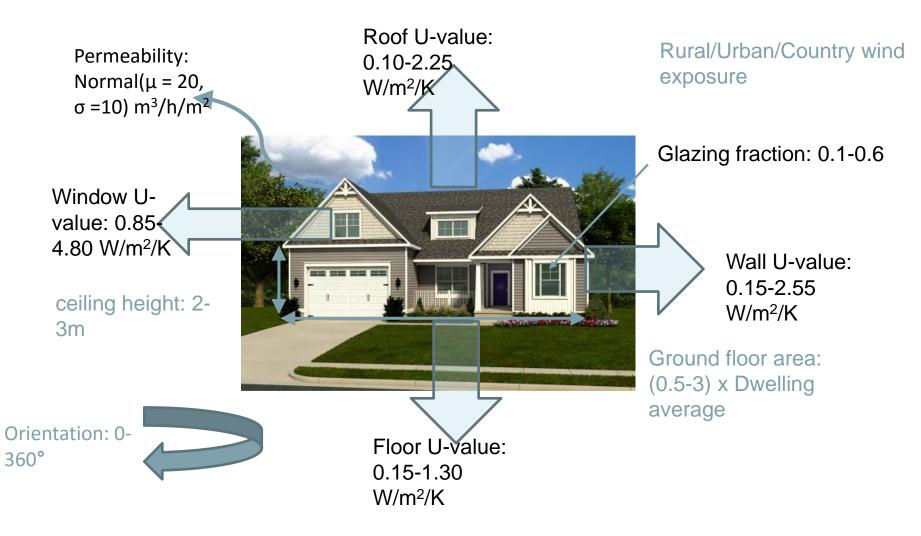



UCL

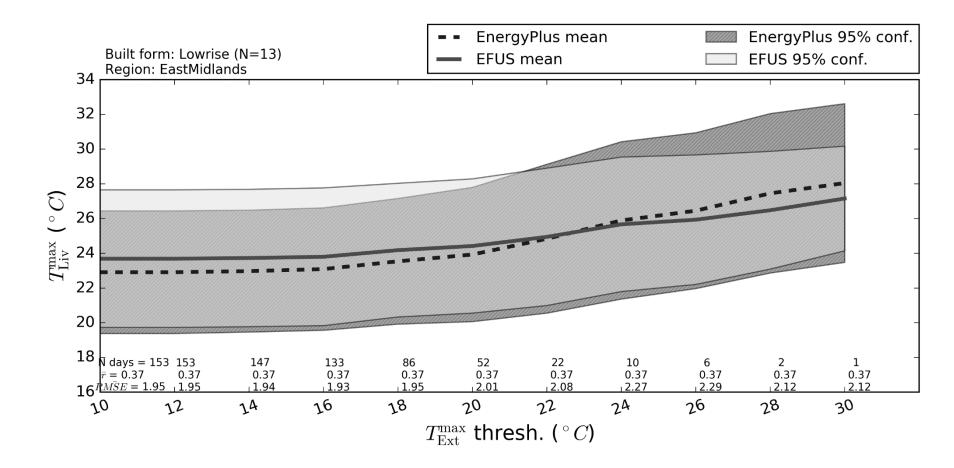
Metamodelling

16

- A metamodelling framework is used to replicate the EnergyPlus models (Symonds et al. 2016)
- ...this allows a large number of dwellings to be modelled (e.g. we can calculate overheating metrics for all entries in the English Housing Survey (EHS) ~16,000 entries within a few minutes)



Example of a typical neural network architecture



Greater detail is being modelled in terms of building and occupancy parameters

Future work will aim to calibrate models using a large scale dataset (Energy Follow-Up Survey)

EnergyPlus models are being run in parallel using High Performance Computing (HPC) facilities at UCL

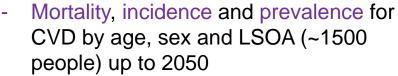
This allows several thousand simulations to be run per hour

A microsimulation health model is being developed to improve morbidity predictions and resolution

Microsimulation is a computational modelling technique that works at the level of the micro-units (e.g. individuals within a population)

- Inputs:
- Census: to set up initial population
- Office for National Statistics (ONS): mortality, migration and birth projections

pollution


ld:

Age: 34 Sex: m Region: E06

Bob29

- Ricardo AEA: air pollution data
- British Heart Foundation (BHF): cardiovascular disease (CVD) data

• Outputs:

$$M = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ 0 & p_{22} & p_{23} & p_{24} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Health, Wellbeing and Sustainable Buildings A New Master's Degree

Are You Interested in Making our Buildings and Cities Better Places to Live?

Would you like to be one of a new generation of professionals, driving innovation by building sustainably for health and wellbeing?

The MSc 'Health, Wellbeing and Sustainable Buildings' is an exciting new Master's degree forming a new generation of professionals to drive innovation for health, wellbeing and human performance in the design, assessment, retrofit and operation of residential and non-domestic buildings.

The MSc is taught at the world-leading UCL Institute for Environmental Design and Engineering.

We are part of The Bartlett: UCL's Global Faculty of the Built Environment

22

MSc 'Health, Wellbeing and Sustainable Buildings'

Course Structure

Six compulsory core modules, plus two optional modules, and a dissertation. Modular/flexible options available. The taught modules are:

- Health, Comfort and Wellbeing in the Built Environment (Core)
- Wellbeing in Buildings: Theory and Practice (Core)
- Integrated Building Design for Health, Comfort and Wellbeing (Core)
- Methods of Environmental Analysis (Core)
- Health and Wellbeing in Cities: Theory and Practice (Core)
- Indoor Air Quality in Buildings (Core)
- Light, Lighting and Wellbeing in Buildings (Optional)
- Building Acoustics (Optional)
- Designing Inclusive Places (Optional)

MSc 'Health, Wellbeing and Sustainable Buildings'

Health, Wellbeing and Sustainable Buildings A New Master's Degree

Are You Interested in Making our Buildings and Cities Better Places to Live?

Website:

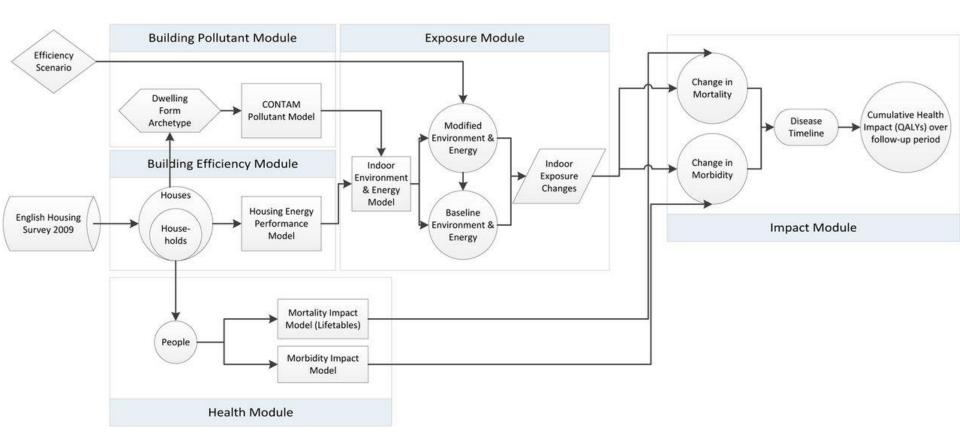
www.bartlett.ucl.ac.uk/iede Course Director:

<u>m.ucci@ucl.ac.uk</u>

Admin. Enquires:

<u>l.tufekci@ucl.ac.uk</u>

We are part of The Bartlett: UCL's Global Faculty of the Built Environment



Backup Slides

Model structure

Model validation

Building performance and exposure model outputs are validated against national measurements and monitoring (where available).

Energy performance

	Modelled	ed Warm Front Study		National		
Building Performance	Mean Mean		Source	Mean	Source	
			Oreszczyn et al,			
Fabric heat loss (W/K)	274	224	2006	203.8	DECC, 2012	
Heat system efficiency (%)	76%	67%	Hong et al, 2009	74%	DECC, 2008	
Permeability (m3/m2/hr)	13.8	17.2	Hong et al, 2006	13.9	Stephen, 1998	

Environmental exposures

Exposures	Modelled	Comparison	Source
Temperature - living room (° C)	18.6	17.9 - 19.1	Hong et al. 2006, OPDM 1998
Temperature - bedroom (°C)	17.1	15.9 - 18.5	Hong et al. 2006, OPDM 1998
Indoor PM 2.5a (ug /m2)	17	17 - 25	Hanninan et al. 2004, Dimitroupolou et al. 2006
Indoor PM 2.5 b	10.9	9.3*	Shrubsole et al. 2012
Outdoor PM 2.5	6.1	6.1*	Shrubsole et al. 2012
Radon (Bq/m3)	26.2	21	Gray et al. 2009
Mould (% with MSI >1)	11.5	14.6 - 21.2	OPDM 1998, Oreszczyn et al. 2006
% of houses with smoker	21.2	21	ONS 2008

Note: a) Weighted average values of kitchen (10%), lounge (45%) and bedroom (45%); b) Indoor sources of PM2.5 relate to cooking only with an emission rate of 1.6 ug/min; * Indicates modelled estimate.

Exposure response health outcomes

Mortality

Exposure	Health outcome	Exposure-response relationship	Reference
Standardised internal temperature	Winter excess cardiovascular mortality	0.98 per [°] C standardised indoor temperature	Warm Front analysis (unpublished)
Environmental tobacco smoke	Cerebrovascular accident mortality	1.25 (if living with smoker)	Lee and Forey (2006)
(ETS)	Myocardial infarction mortality	1.30 (if living with smoker)	Law et al. (1997)
PM2.5	Cardiopulmonary mortality Lung cancer mortality	1.082 per 10 μg/m3 1.059 per 10 μg/m3	Pope et al. (2002; 2004) Pope et al. (2002; 2004)
Radon	Lung cancer mortality	1.16 per 100 Bq/m3	Darby et al. (2005)

Morbidity

Exposure	Health outcome	QALY	Exposure-response function	
		weighting	Relative Risk	Reference
	Mental health:			
Standardised internal temperature	Common mental disorder (GHQ-12 score 4+)	0.9	0.90 per °C	Based on Warm Front (e.g. Gilbertson et al., 2012)
Mould	Respiratory illness:			,
	Harm class II (hospital admission)	0.75	1.53	Based on Fisk et al. (2007)
	Harm class III (GP consultation)	0.9	1.53	As above
	Harm class IV (minor symptoms)	0.9	1.83	As above