Urban Heat Island Effect Digital Design for Healthy Precincts

CIBSE 12.08.2024

Urban Heat Island

Ge

Climate change is increasing temperatures. Cities need to adapt to reduce heat urban island effects.

Mott MacDonald | Precinct Design | Urban Heat Island Effect

Heatwaves & Unliveable cities

- Cities could become • 'unbearable'
- Increase in death related to heatwaves
- Increase in energy consumption to cool buildings
- Water scarcity

Australia 2050 projections (IPCC)

Mott MacDonald Restricted

0.0°

Future temperature projections

Brisbane

Source: CSIRO_Predictive weather files for building energy modelling

Mott MacDonald | Precinct Design | Urban Heat Island Effect

Future thermal stress projections

Figure 1.16 UTCI in Brisbane _ Predictive weather file 2090 (RCP 8.5) and Urban Heat Island Effect (Direct Sun and Wind)

Source: CSIRO_Predictive weather files for building energy modelling

Mott MacDonald | Precinct Design | Urban Heat Island Effect

Death from natural hazards

- Deaths during a heatwave may be direct (heat illness) or indirect (heat exacerbating the effects of existing illness or vulnerability)
- From 1900 to 2010, extreme heat events have been
- responsible for at least 4,555 fatalities in Australia

Number of deaths

1900-2011

Source: Queensland State Heatwave Risk Assessment 2019

Background Research

- Review of local, national and global drivers
- Research of the existing knowledge on the topic and recent findings
- Coordination with universities to establish the bridge between the academia and the industry

Drivers

| Precinct Design | Digital Workflow

Walking during heatwaves

- Due to climate change, Melbourne is experiencing more hot weather and heat wave events than ever before
- Find the coolest routes through the city on hot summer days

Cool Routes tool

Image credits: City of Melbourne Cool Routes tool coolroutes.com.au

Urban Heat Island Effect

What can increase temperatures in the Built Environment:

- Impervious surfaces
- Dark surfaces
- Lack of vegetation
- Heat rejection

Outdoor thermal comfort can be enhanced to improve health and wellbeing.

Outdoor

erma

Mott MacDonald | Precinct Design | Outdoor Thermal Comfort

Outdoor Thermal Comfort

Principles

Temperatures & Solar radiations

- Define Operative Temperature by analysing Dry Bulb and Surface Mean Radiant Temperatures
- To understand perceived outdoor temperatures need to add the effects of wind, humidity and personal factors

Digital Workflow & Simulations

Analysis related to Outdoor Thermal Comfort

Sun Hours Analysis

Figure 132 View 2 results _ 21st of June

Hours 10.00 #-00 12.00 a no

18.00 9.00

Mott MacDonald | Precinct Design | Outdoor Thermal Comfort

Verify strategy impacts

- Assess MRTs of BAU design
- Compare current and future performance
- The simulation confirms increasing significantly increased MRTs across the site

Future projections Impact

Verify strategy impacts

- Proposed strategy is to increase tree canopy
- The simulation confirms increasing tree canopy significantly reduces MRTs across the site

Future projections Impact

Summer: Average surface MRT with low tree canopy: 65.2°C

Mott MacDonald | Precinct Design | Outdoor Thermal Comfort

Verify strategy impacts

- Compare 'at completion' scenario with young trees vs future projection with mature canopy
- The simulation confirms, that even with the increased future scenario temperatures, mature tree canopy significantly reduces MRTs across the site

Trees maturity testing

Test 5 with young trees (2030) _ Summer average surface MRT: 51.8'

Figure 5.2 Summer results _ Test 5a (MRT at 12pm)

Test 5 with mature trees (2090) _ Summer average surface MRT: 44

Figure 5.3 Summer results _ Test 5b (MRT at 12pm)

Verify impact of a strategy

- Assess wind speed at different directions
- Identified issue is increased wind speed between towers
- Consider outdoor discomfort and potential for natural ventilation impacts

Impact of urban mass on wind factors

Verify strategy impacts

- Assess UTCI of a proposed project
- Proposed strategy is to increase tree canopy
- The simulation confirms adding trees can significantly reduce MRTs across the site
- Increase of low temperatures in some locations could mean the area is overshaded

Impact of the tree canopy on UTCI

Annual Comfort Category

Category	Acceptability	Description	Function examples
All seasons	>90% hours in each season	Year-round	Parks and playgrounds Al fresco dining areas
Seasonal	>90% hours mid-season; >70% hours in winter and summer	Most of the year	. Rooftops and podiums
Short-term	>50% hours in each season	Short term year-round	 Public transport waitin Footpath
Short-term seasonal	>50% hours mid-season; >25% hours in winter and summer	Short term most year-round	. Bicycle lane
Transient	>25% hours mid-season; >25% hours in winter and summer	Transient	Parking area

Optimised Precinct Design

Using digital tools is the best way to verify the impacts of the proposed design and optimise thermal comfort.

MacDonald | Precinct Design | Optimised Precinct Desig

Findings

Summer_ 12pm: Average MRT: 69.9°C

Summer_1am: Average MRT: 27.2°C

Summer_ 12pm: Average MRT: 77.4°C

Summer_1am: Average MRT: 25°C

Mott MacDonald | Precinct Design | Outdoor Thermal Comfort

Design Interventions

Mott MacDonald | Precinct Design | Outdoor Thermal Comfort

Integrative Workflow

- All disciplines have impacts on outdoor thermal comfort
- Multi disciplinary integrative approach is needed
- Sustainability and Engineering Science help define, test and measure options
- Digital technology leads to better and faster decisionmaking

Time to act.

We are building now for the next 50 years and more.

Understand challenges.

Digital tools provide a better understanding of outdoor comfort.

Propose solutions.

Digital tools can test and quickly compare design options.

Design better.

Digital tools help in decision-making to achieve the best design outcomes.