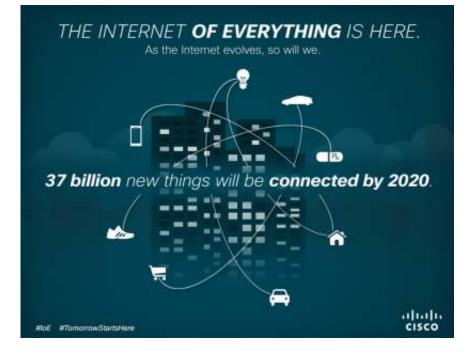
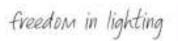

Paradigm shift in Lighting Control

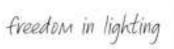
SLL Masterclass 2014-2015 "Light for Life"


© Helvar 2014



Paradigm shift in Lighting Control **Topics**

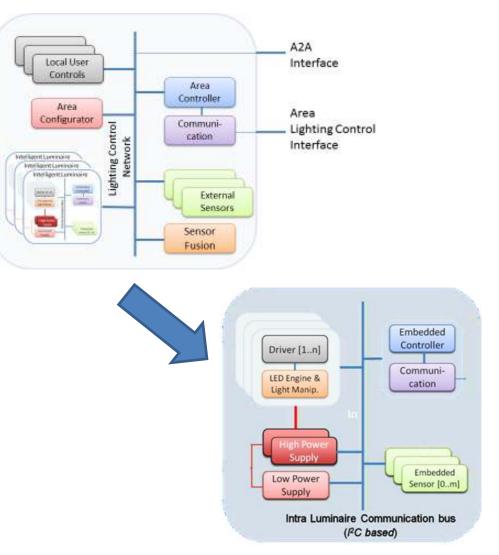
- The role of lighting controls in our daily lives
- The importance of user interfaces
- Shift towards intelligent networks
- Standardisation & Metrics

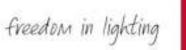


The role of lighting controls in our daily lives

A holistic approach to entire light system

- Environment
 - Visual effects
 - Emotional effects
 - Biological effects
- Building Blocks
 - Module
 - Fixture
 - System

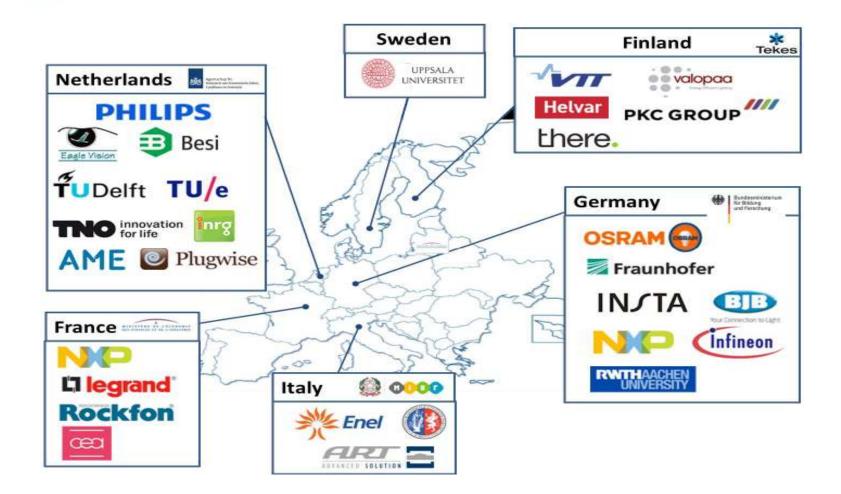


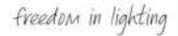


The role of lighting controls in our daily lives

Importance of distributed intelligence

- No central control
 - Network topology
- Autonomous Devices
 - React rather than instructed
- Decisions take place locally
- Connections to other networks
 - Via local gateways
- Future "Internet of Things"

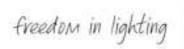




The role of lighting controls in our daily lives

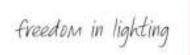
Importance of distributed intelligence

ENLIGHT Energy efficient and intelligent lighting systems



The role of lighting controls in our daily lives **SMART lighting**

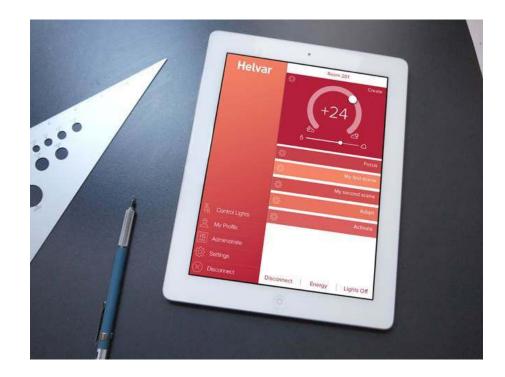
- Perfect light level
- Colour temperature
- Motion Sensing
- Intuitive Learning

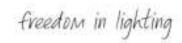


The role of lighting controls in our daily lives

Convergence of control philosophies

- Traditional to have separate control systems
 - Electric Lighting
 - Blind Control
 - HVAC
- Today system inputs shared by all systems
- Simplified commissioning methods
 - Improving operational efficiency's
 - Empowering the end user

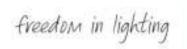




The importance of user interfaces

Tailored to individual user requirements

- Controls have come full circle
 - Simple on/off
 - Scenes
 - Complex Control
- Take Control
- Take ownership

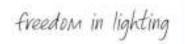


The importance of user interfaces

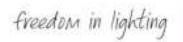
Sea Change to soft applications

- Traditional switches migrating to smart devices
- Growth of smart devices
 - 2014, 70 billion mobile app downloads
 - 2015, over 80% handsets will be smart phones
- Intuitive interface on common hardware
 - Tablets/Phones
- Use inbuilt connectivity
 - Phone as presence detector
 - Commissioning tool
 - Scene editor

The importance of user interfaces


Integration with other systems

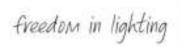
- Enhanced user experience
 - Mode
 - Safety
 - Security
- Possible uses
 - Televisions
 - Home Security Systems
 - Home appliances
 - Smoke detectors
 - Door locks



Shift towards intelligent sensor networks

Understanding the impact of lighting

- Sensors primarily are there to save lighting electrical energy.
- Their data can also shared by other systems.
- What else can they offer/achieve?
 - Measurement of Colour Temperature
 - Mapping of building usage
 - Heating/load shedding
 - Access control & security


Shift towards intelligent sensor networks

Human Benefits of SMART lighting systems

Human Centric Lighting

- 2000's scientific discovery revealed: human biological rhythms are influenced by specific light conditions
- Lighting has tremendous effects on human health, productivity and well-being
- Advanced lighting systems can support the human circadian rhythm, enhance concentration, prevent sleeping disorders and improve overall well-being

Shift towards intelligent sensor networks

Human Benefits of SMART lighting systems

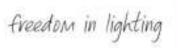
Application-specific effects of human centric lighting

- Enhanced drug efficacy, e.g. of antidepressants
- Reduced therapy times and capacity requirements

- Decreased fatigue and shortened wake-up times
- Extended and deepened concentration periods

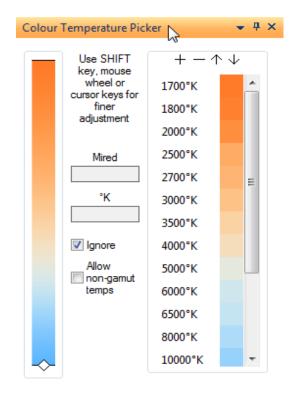
- Increased employee motivation and commitment
- Individualized maximization of concentration and energy

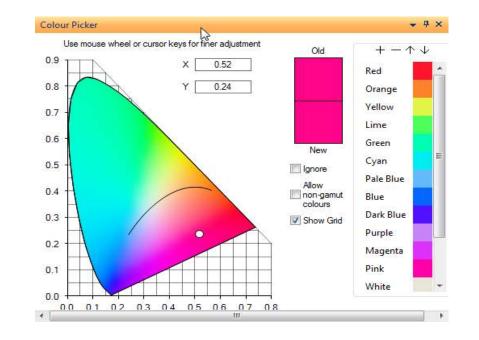
- Improved output and error rates of repetitive work steps
- Biorhythm adjustment for nightshift workers

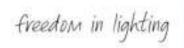


 Daylight-compatible product presentations

Helvar


- Extended daytime in shopping malls
- (Colored) accentuation of architecture and design
- "Mood support" in wellness and dining areas
- Prevention of depressions, dementia etc.
- Integrated wake-up and relaxation support

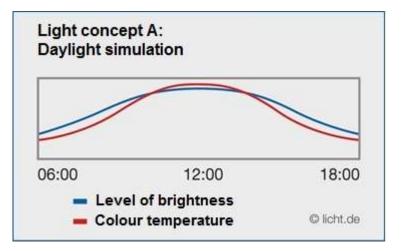



Shift towards intelligent sensor networks Colour Control

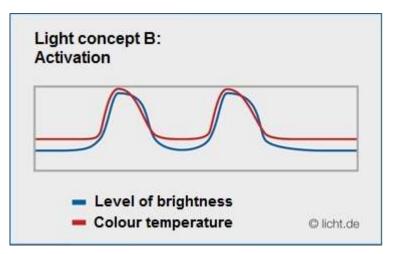
• This is not a new concept but has now become a more economical solution

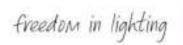
- Selection for Colour Temperature
 - Colour Hue & Saturation are controlled using CIE Chromaticity diagram

Shift towards intelligent sensor networks


Complement Circadian Rhythm

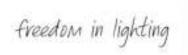
- Dynamic Adjustment over time
 - Intensity
 - Colour Temperature
 - RGBW




• Pre defined patterns

Office, Hospital

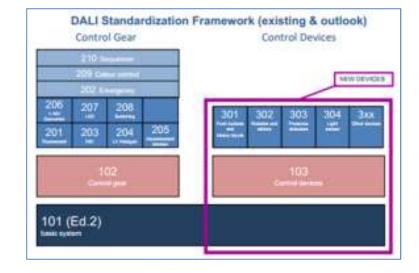
School



Standardisation & Metrics

Linking the science to control philosophies

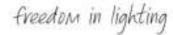
- Science already tells us of the benefits of HCL
 - The Why
- Manufacturers have the technical expertise to create meaningful solutions.
 - The How
- Traditionally the link between the two is missing.
- Initiatives trying to bridge this gap
 - Enlight
 - Lighting Europe
 - Lighting for People



Standardisation & Metrics

Maximising the adoption of new technologies

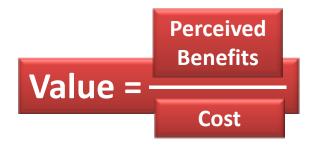
- Standards
 - DALI Colour Control
 - DALI 2
 - Wireless
 - Zigbee
 - Z-Wave
 - Bluetooth
 - Power Over Ethernet

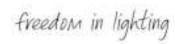


• Metrics Today

- Illuminance
- Daylight Factor
- Colour Rendering Index (CRI)
- Luminous Efficacy

- Metrics Tomorrow
 - LENI calculation
 - Climate Based Daylight Modelling
 - Colour Rendering & Brightness
 perception
 - Universal luminous efficiency function

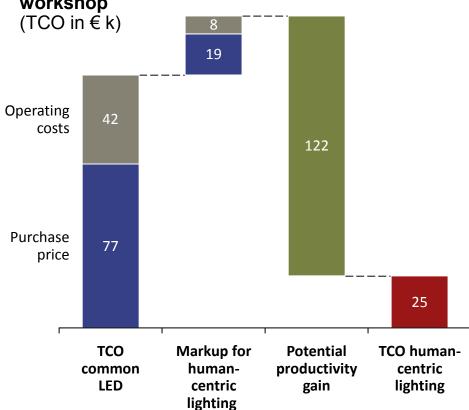




Standardisation & Metrics

Economies of Scale

- Lighting should be based upon value where *both* benefits and costs can be measured
- Huge array of different solutions available today
 - KNX, EnOcean, Zigbee, Z-Wave, Bluetooth
- Common agreement is needed as to best way forward.
- Lessons to be learnt from the IT world
 - e.g. Wi-Fi



Standardisation & Metrics

Potential Cost of Ownership

- Only 1.7% increase in productivity required to off-set higher purchase prices & operating costs
- Studies indicate potential productivity improvements of up to 7.7%

• Assumptions:

- Workshop area of 1,500m²
- HCL with 25% higher purchase price and 20% higher power consumption than common LED
- 10 employees, each completing 6 tasks per day with a contribution margin of €12/task
- Potential productivity gains of €12.2k p.a²
- TCO calculated over a period of ten years

1. Human centric Lighting

Calculation: 7.7% * 6 (tasks/day) * 12€ (contribution margin/task) * 220 (work days) * 10 (employees) = €12.200
 Sources: A.T. Kearney; Lichtwissen 19 (p. 30) based on Juslén Henri, 2007: Lighting, productivity and preferred illuminances - field studies in the industrial environment. Helsinki University of Technology.

Standardisation & Metrics

Conclusions

- We have only just begun to understand the benefits of Human Centric Lighting
- The journey of learning will continue for many years to come.
- New/future technologies will alter this journey.

Thank you