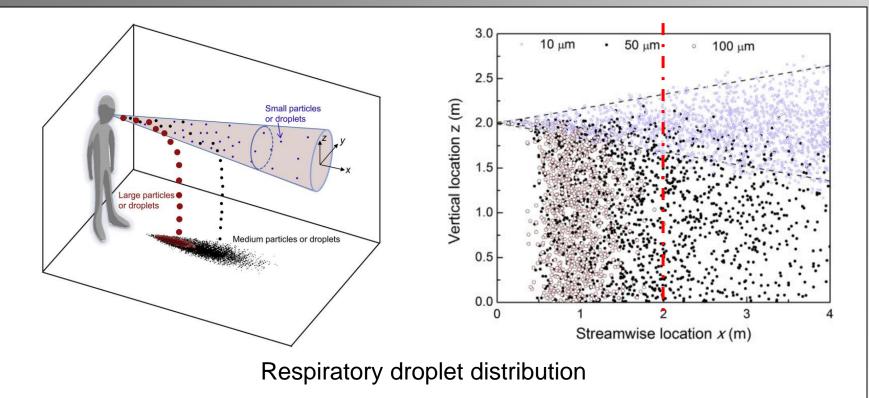
The impact of psychrometrics on the aerosol transmission of the SARS-CoV-2 virus in buildings

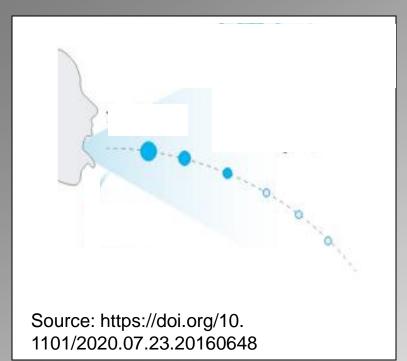
> Prof. Clive Beggs Emeritus Professor of Applied Physiology Leeds Beckett University

Collaboration

Prof. Clive Beggs Emeritus Professor of Applied Physiology Carnegie School of Sport, Leeds Beckett University

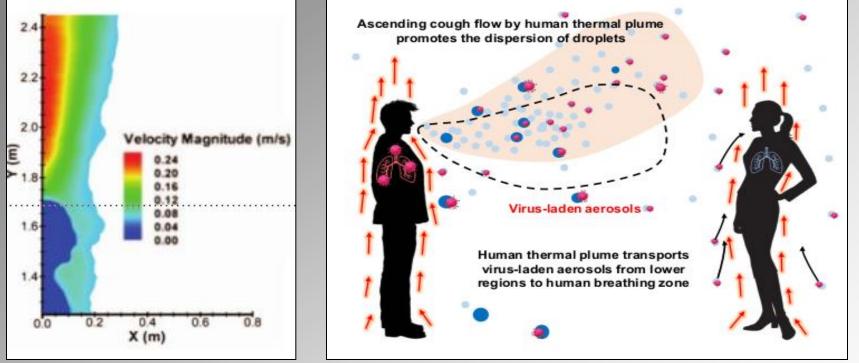


Dr Eldad Avital Reader in Computational (& Experimental) Fluids and Acoustics School of Engineering and Materials Science, Queen Mary University of London

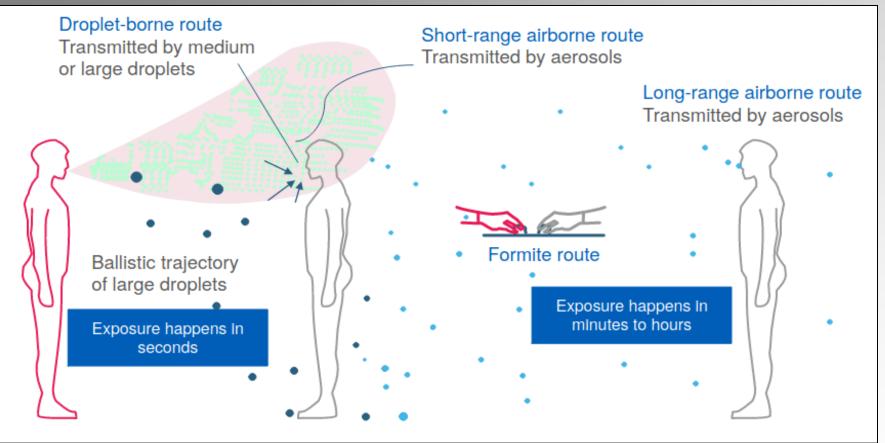


Respiratory Droplets & Aerosols

- Large respiratory droplets (>100 µm) behave ballistically and fall to the ground within <2 m [1].
- Respiratory droplets <100 µm diameter rapidly evaporate to become aerosols which can travel much further.
- During speaking and coughing =>85% of the droplets produced are <100 μm [2].
- 1. Wei J, et al. Building and Environment 93 (2015) 86-96; 2. Beggs CB. Is there an airborne component to the transmission of COVID-19?: a quantitative analysis study. medRxiv. 2020.


Evolution of Droplets <100 µm

- 1. Nicas M, et al. Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. *J Occup Environ Hyg.* 2005;2(3):143-54.
- 2. Marr LC, et al. Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. *Journal of the Royal Society Interface.* 2019. 16.

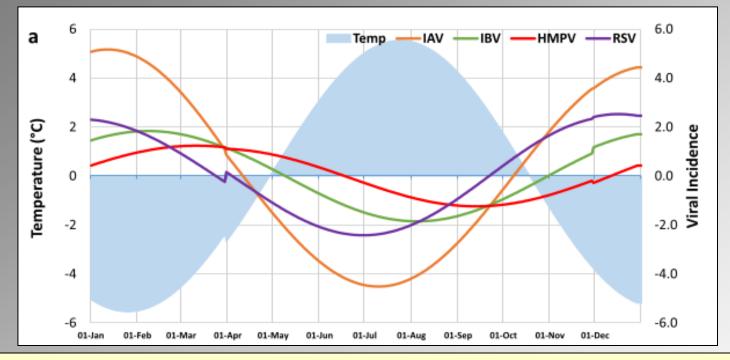

- Respiratory droplets <100 µm in diameter rapidly evaporate to form smaller aerosol particles [1].
- Their final droplet size, depends on the concentration of proteins in the droplet and the room air conditions.
- Nicas et al. estimated the final droplet diameter to be about 50% of the exhaled droplet diameter [1].
- Marr et al. estimated final droplet diameter to be between 20-40% of the initial value [2].
- With COVID-19 the eventual size is likely to be <50 µm in diameter.
- Aerosol particles 50 µm in diameter have a settling velocity of 0.08 m/s.

Respiratory Aerosols & Thermal Plumes

- Aerosol particles <50 µm in diameter have settling velocities <0.08 m/s and thus can easily be transported upwards by the thermal plumes of room occupants.
- Respiratory aerosol particles <50 µm (<100 µm at source) are readily transported by the thermal plumes and can be widely distributed around room spaces.
- Aerosol particles <50 µm diameter can take several (0.5-11) minutes to settle of the air, with many particles <10 µm becoming truly airborne.

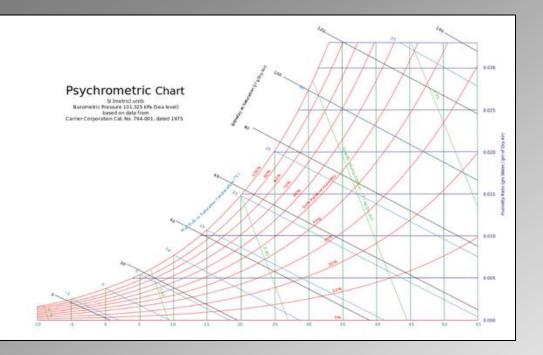
Droplet & Aerosol Transmission of SARS-CoV-2 Virus

- Short-range transmission involves large ballistic droplets (travel <2 m) and 'clouds' of aerosols - occurs within seconds
- Long-range transmission involves 'airborne' aerosols (<100 µm at source) occurs over minutes and hours


Influenza A & SARS-CoV-2 Viruses

Influenza Virus	 4 strains, multiple subtypes (-) strand, segmented RNA genome HA and NA surface proteins Enveloped 	 Influenza A virus Enveloped RNA virus Genome about 13.6 kilo-bases long Haemagglutinin (HA) & neuraminidase (NA) surface proteins Host cell receptor is sialic acid
SARS-CoV-2	 1 strain (+) strand, non-segmented RNA genome Spike (S) protein Enveloped 	 SARS-CoV-2 virus Enveloped RNA virus Genome about 29.9 kilo-bases long Spike (S) surface proteins Host cell receptor is ACE2
Source: Americ	an Society for	

Source: American Society for Microbiology


NB. Both viruses share similarities in transmission behaviour. Both are transmitted via droplets and aerosols.

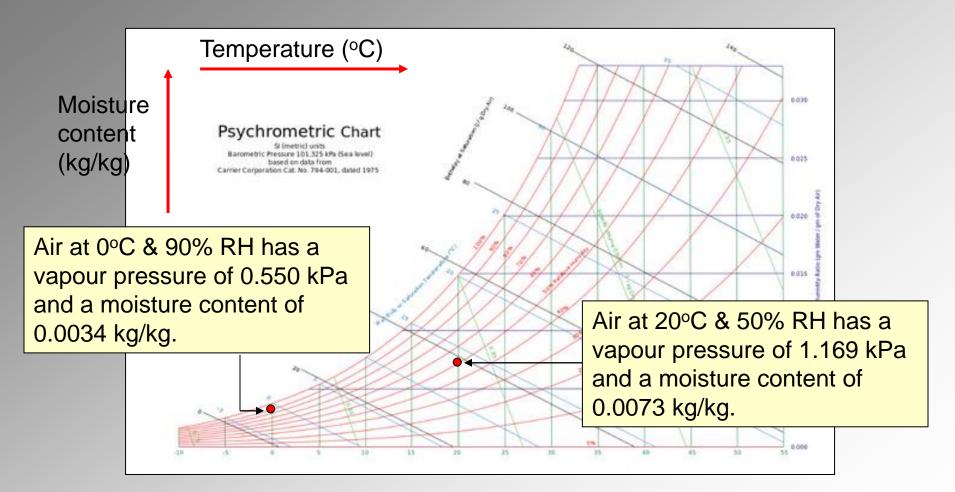
Seasonality: Enveloped Viruses

- Study undertaken in Edinburgh, Scotland [1].
- Enveloped viruses peaked in the winter: respiratory syncytial virus (RSV) 17th December; influenza A (IAV) – 12th January; influenza B (IBV) – 8th February; human metapneumovirus (HMPV) – 11th March.
- RSV, IAV, IBV and HMPV are all enveloped negative-sense single-stranded RNA viruses.
- The SARS-CoV-2 virus also appears to exhibit seasonality.
- 1. Price, R.H.M., et al. Association between viral seasonality and meteorological factors. Sci Rep 9, 929 (2019).

Psychrometrics

Relative humidity

$$RH = \frac{p_v}{p_s}$$


Moisture content

 $g = \frac{0.622p_v}{p_b - p_s}$

- RH is not an absolute value but rather a ratio of vapour pressures and therefore a function of air temperature.
- Therefore, it is incorrect to perform statistical analysis using RH as an independent variable.

- p_v is vapour pressure (kPa)
- p_s is saturated vapour pressure (kPa)
- p_b is barometric pressure (101.325 kPa)
- g is moisture content (kg/kg)

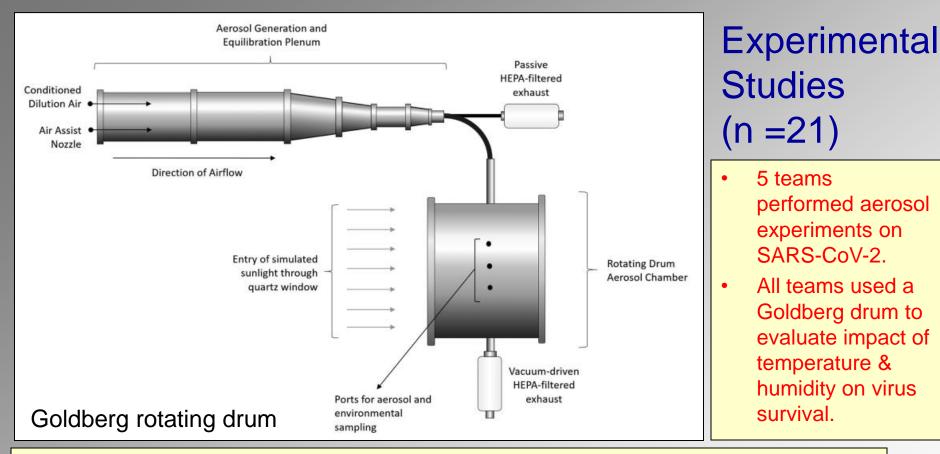
RH cannot be considered in isolation

 $t_{1/2}(x_T, x_{RH}) = 32.426272 - 0.622108x_T - 0.153707x_{RH}$ 20 Surface $R^2 = 0.71$ ABS Plastic RMSE = 2.619 Nitrile Glove Half-life (hours) Actual P < 0.0001 Stainless Steel 15 10 5 15 10 20 Half-life (hours) Predicted

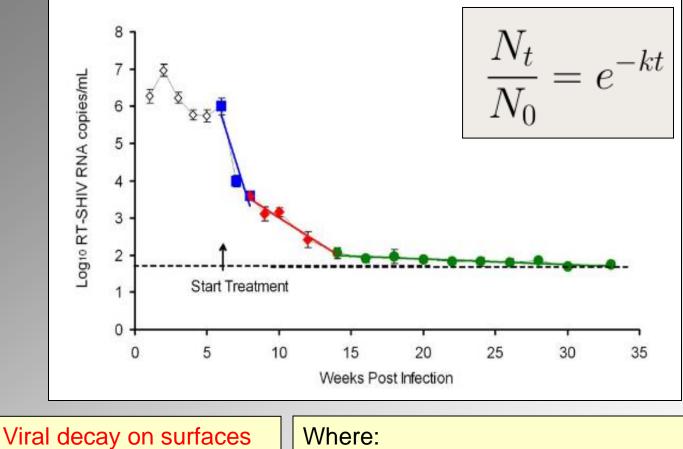
Here RH is used in a regression model.

Relative humidity is misunderstood

- Many researchers fail to realise that RH is not an absolute value but rather a ratio of vapour pressures and therefore a function of air temperature.
- This can lead to wrong conclusions.


AMERICAN SOCIETY FOR MICROBIOLOGY OBSERVATION Applied and Environmental Science

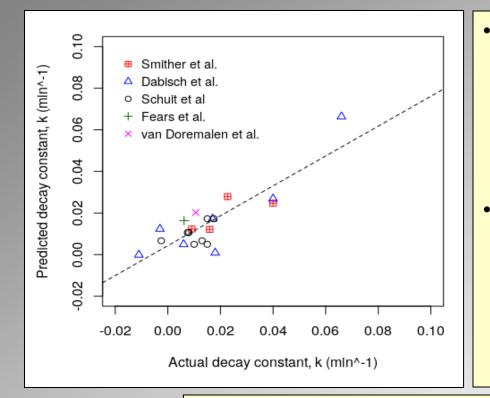
Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces


^(B) Jennifer Biryukov,^a Jeremy A. Boydston,^a Rebecca A. Dunning,^a John J. Yeager,^a Stewart Wood,^a Amy L. Reese,^a Allison Ferris,^a David Miller,^a Wade Weaver,^a ^(B) Nathalie E. Zeitouni,^a Aaron Phillips,^a Denise Freeburger,^a Idris Hooper,^a ^(B) Shanna Ratnesar-Shumate,^a Jason Yolitz,^a Melissa Krause,^a Gregory Williams,^a David G. Dawson,^a Artemas Herzog,^b ^(B) Paul Dabisch,^a ^(D) Victoria Wahl,^a Michael C. Hevey,^a ^(D) Louis A. Altamura^a

NB. This is very misleading. For example, air at 0°C & 90% RH is much drier and contains less energy than air at 25°C & 30% RH.

- Smither et al. Experimental Aerosol Survival of SARS-CoV-2 in Artificial Saliva and Tissue Culture Media at Medium and High Humidity. *Emerging Microbes & Infections*. 2020; 9(1), 1415-1417
- **Dabisch et al.** The Influence of Temperature, Humidity, and Simulated Sunlight on the Infectivity of SARS-CoV-2 in Aerosols. *Aerosol Science and Technology*. 2020; 55(2), 142-153
- Schuit et al. Airborne SARS-CoV-2 is Rapidly Inactivated by Simulated Sunlight. *The Journal of infectious diseases*. 2020; 222(4), 564–571
- Fears et al. Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions. *medRxiv*. 2020
- van Dormalen et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine. 2020; 382, 1564-1567

Exponential Viral Decay



Viral decay on surfaces and in aerosols typically conforms to an exponential decay model.

k = Decay constant of the virus (min⁻¹)

- t = Time (minutes)
- N_0 = Virus RNA copies at t = 0
- N_t = Virus RNA copies at t minutes

Psychrometric model for SARS-CoV-2 survival in aerosols

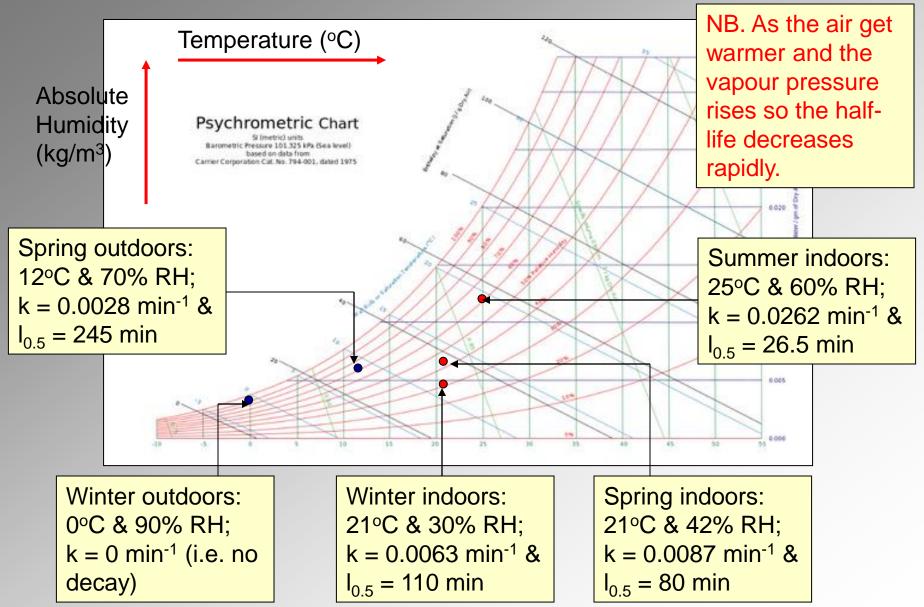
- Decay constant, *k*, can be predicted with reasonable accuracy (R² = 0.718, p<0.001), using enthalpy, vapour pressure, and specific volume of the air.
- Virus half-life can then be computed using:

$$l_{0.5} = \frac{ln(2)}{k}$$

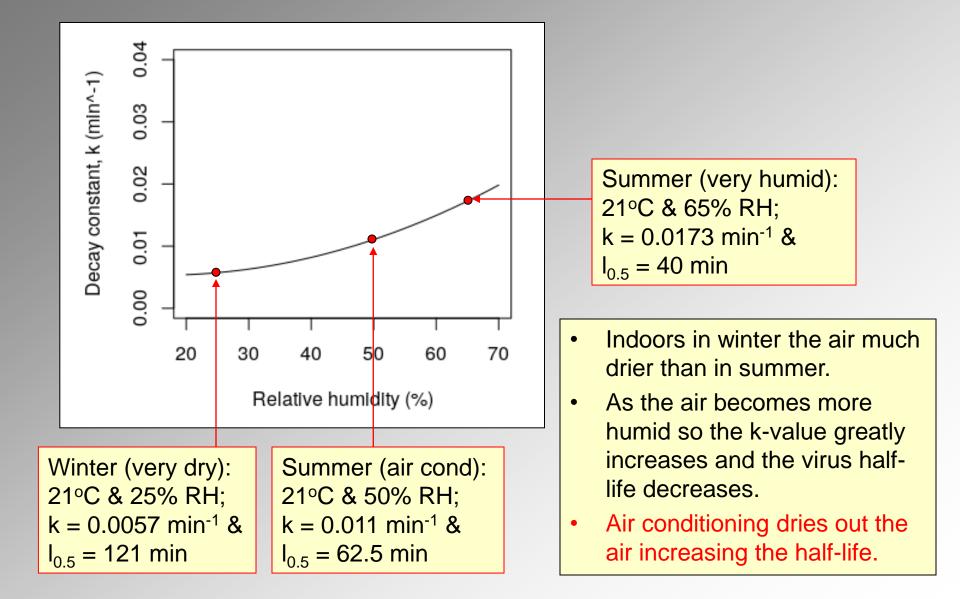
Beggs CB, Avital EJ. A psychrometric model to assess the biological decay of the SARS-CoV-2 virus in aerosols. PeerJ. 2021 (in revision) $k = 16.980 + (0.062 \times h) - (0.796 \times p_v) - (21.950 \times s)$

Where: $k = \text{Decay constant of the virus (min^{-1})}$ h = Specific enthalpy of air (kJ/kg) $p_v = \text{Vapour pressure (kPa)}$ $s = \text{Specific volume of air (m^3/kg)}$

k-values & COVID-19 cases for 2020

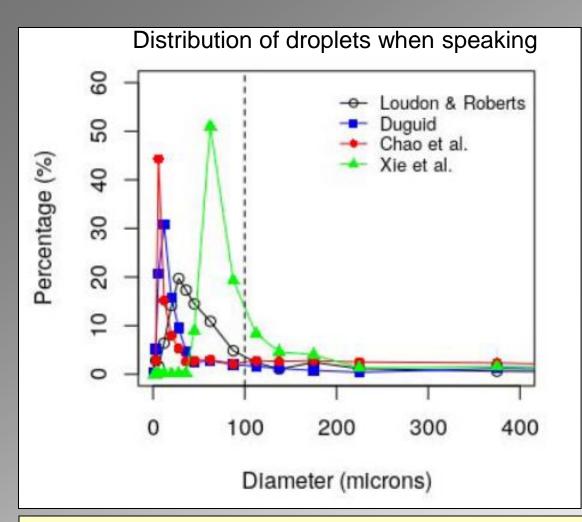

- March mean half-life value (minutes): London – 888; Paris – 495; Milan - 517
- August mean half-life value (minutes): London – 41; Paris – 38; Milan – 26
- Virus half-life dramatically reduced from April to August, which is the period when infections dramatically dropped in Europe.
- In September infections rose dramatically in Europe when the k-value decreased.

Outside air: mean half-life of SARS-CoV-2 virus


		January	February	March	April	May	June	July	August	September	October*
City	Parameter	Mean									
		(SD)									
London	k.pred (min ⁻¹)	0.00113	0.00108	0.00078	0.00262	0.00484	0.00963	0.01150	0.01697	0.00980	0.00488
		(0.00192)	(0.00183)	(0.00158)	(0.00265)	(0.00388)	(0.00528)	(0.00486)	(0.00828)	(0.00607)	(0.00355)
London	Mean half-life (min)	613.4	641.8	888.6	264.5	143.2	72.0	60.3	40.8	70.7	142.0
Paris	k.pred (min ⁻¹)	0.00110	0.00171	0.00140	0.00500	0.00704	0.01143	0.01287	0.018.23	0.01224	0.00545
		(0.00192)	(0.00254)	(0.00229)	(0.00359)	(0.00548)	(0.00562)	(0.00530)	(0.00830)	(0.00639)	(0.00380)
Paris I	Mean half-life (min)	630.1	405.3	495.1	138.6	98.5	60.6	53.9	38.0	56.6	127.2
Milan	k pred (min ⁻¹)	0.00008	0.00077	0.00134	0.00442	0.01142	0.01756	0.02626	0.02686	0.01762	0.00565
	200002	(0.00035)	(0.00149)		(0.00386)		(0.00722)				(0.00417)
Milan I	Mean half-life (min)	8663.8	900.1	517.2	156.8	60.7	39.5	26.4	25.8	39.3	122.7

Beggs CB, Avital EJ. A psychrometric model to assess the biological decay of the SARS-CoV-2 virus in aerosols. PeerJ. 2021 (in revision)

Model Predictions



Half-life in room space at 21°C

Indoor virus half-life range

- In the UK internal air conditions might range from, say,18°C and 25% RH, equating to k = 0.0038 minute⁻¹ (half-life = 181.5 minutes) in winter, to, say, 25°C and 60% RH, equating to k = 0.0262 minute⁻¹ (half-life = 26.5 minutes) in summer.
- In the UK the half-life of the SARS-CoV-2 virus within buildings could be as much as seven times longer during the winter months compared with the summer.
- However, we cannot be certain that this increase in virus half-life contributes to the spread of COVID-19 in buildings, or if it does, the mechanism by which it contributes.

Implications

- When speaking on average 88.2% of the aerosol droplets produced are <100 µm [1].
- However, in winter when the air is drier, the aerosol droplets will tend to be smaller due to greater evaporation.
- The smaller aerosol
 particles will take longer
 to fall out of the air and
 thus are more likely to be
 inhaled.
- The psychrometric quality of the air will alter the viral load in aerosol droplets.
- During winter when the air is cooler and drier, and the half-life of the virus is longer, the viral load in any aerosol particles that are inhaled is likely to be greater [2].
- 1. Beggs CB. Is there an airborne component to the transmission of COVID-19?: a quantitative analysis study. medRxiv. 2020; 2. Beggs CB, Avital EJ. A psychrometric model to assess the biological decay of the SARS-CoV-2 virus in aerosols. PeerJ. 2021 (in revision)

Differences between summer and winter

Attribute	Winter	Summer
Virus half-life	Half-life is long. So, viral load in inhaled aerosol droplets is high.	Half-life is short. So, viral load in inhaled aerosol droplets is lower.
Aerosol droplet size	Air is dry. So droplets evaporate quickly. Greater number of small aerosols <10 microns produced which stay in the air for longer.	Air is less dry. So droplets evaporate slowly. Aerosols are therefore larger and fall out of the air more quickly.
Ventilation	Buildings less well ventilated, because high proportion of air is recirculated.	Buildings well ventilated.
Habits	People spend more time indoors.	People spend less time indoors.
Immunity	Lower vitamin D levels and nasal cavity more dry.	Higher vitamin D levels and nasal cavity more moist.

COVID-19 Transmission: Key Issues

Proximity Risk increases with shorter distance and face-to-face

Enclosure Risk higher indoors, increases with poor ventilation

Crowding More people means a higher chance of an infector

Duration Risk increases the longer you are close to an infectious person

Activity type Singing, loud speaking, aerobic activity etc. increase viral emission & breathing rate

Environmental The virus survives in cool, dry and dark

Symptoms Asymptomatic transmission means it is hard to detect infectious people

(Courtesy of: Prof. Cath Noakes)

Conclusions

- Clear evidence that COVID-19 is transmitted via respiratory aerosols that become airborne.
- It is possible to predict the expected half-life of the virus using a linear regression model and the psychrometric qualities of the air.
- The SARS-CoV-2 virus survives for much longer when the air is cooler and drier.
- Many more small respiratory aerosols are produced when the air is cool and dry in winter, and these will tend to remain suspended in room air for longer.
- However, we cannot say conclusively that increased virus half-life contributes to increased transmission of the SARS-CoV-2 virus – even if we suspect it does.