The DAPPLE Dispersion Project: Comparison of full scale and wind tunnel experiments with CFD

Prof Janet F. Barlow University of Reading

Acknowledgements to: DAPPLE Consortium members John Lally, Westminster City Council, BT

Urban pollution dispersion depends on complex flow patterns around streets and intersections

DAPPLE

-dapple

Arnold et al. 2004, STOTEN

Dispersion of Air Pollutants and their Penetration into the Local Environment

London-based research projects

DAPPLE (2002-2009) – street level dispersion REPARTEE (2006-2007) – vertical pollutant distribution ACTUAL (2009-2014) – building design interactions with urban climate at a range of scales ClearfLo (2010-2013) – air quality at city scale

DAPPLE I (2002-06) Main Activities

- □ Traffic movement
- Emissions
- □ Pollutant monitoring (CO, NOx, CO2...)
- □ Wind and meteorology
- □ Urban tracer studies (3xPFCs, SF6)
- □ Wind tunnel modelling
- □ Computer modelling (LES -> empirical)
- □ Personal exposure rate measurement (location, CO, fine particles)
- □ Analysis -> Practical outputs -> knowledge transfer

Consortium leader: Prof Alan Robins, Uni of Surrey

Reading, Leeds, Imperial, Bristol, Cambridge

www.dapple.org.uk

-dopple-BT Tower NE wind direction

ppe

Lower

Roof-top reference U_H

Courtesy of Google Maps Wind direction distribution for BT Tower Northeast sector

DAPPLE 2004 tracer release

Release: 2m, 15 min. 2 from X1.

Samples: 1.5m, 30 min

- 15: inside WCC
 - 13: rooftop, 14: street(1.5m)

DAPPLE wind tunnel work (Prof Alan Robins, EnFlo)

- Scale 1:200
- Reference wind speed: $U_r = 2.5 \text{ m/s}$
- Extensive tracer releases, flow measurements

Three DAPPLE CFD studies

Panagiotou I, Neophytou MKA, Hamlyn D, Britter RE (**2013**) City breathability as quantified by the exchange velocity and its spatial variation in real inhomogeneous urban geometries, STOTEN, 442, 466-477

Xie Z-T, Castro IP (**2009**) Large-eddy simulation for flow and dispersion in urban streets, Atmos. Env., 42(13), 2174-2185

Xie Z-T (**2011**) Modelling street-scale flow and dispersion in realistic winds – towards coupling with mesoscale meteorological models, Boundary-Layer Meteorol., 141(1), 53-75

Panagiotou et al. 2013 – set-up

- RANS (FLUENT), with Reynolds Stress Turbulence model (permits anisotropic turb typical in obstacle wakes)
- 1:200 model; average building height H= 0.11m,
- Packing densities $\lambda_f = 0.25$, $\lambda_p = 0.5$

Panagiotou et al. 2013 – streamwise windspeed

Panagiotou et al. 2013 – particle visualisation

- Exchange of air between street and flow above
- Building scale vortices combined with along street channelling

Xie and Castro 2009 – set-up

- Polyhedral mesh
 (nearwall H/15, c. 1m)
- Inlet:

Digital filter inlet condition, realistic lengthscales (Xie and Castro 2008);

Wind and stress profile matching windtunnel;

Periodic bo. co.'s did not give accurate results!

Xie and Castro 2009 – urban flow features

 Separation not captured using k-ε (not shown)

Xie and Castro 2009 – tracer concentrations

- Excellent agreement with windtunnel
- RANS overestimates street level concentrations

Xie 2011 "Modelling street-scale flow and dispersion in realistic winds – towards coupling with mesoscale meteorological models"

 Deriving realistic, large-scale varying inlet conditions using observed winds on BT Tower

Xie 2011 - mesh

Inlet varies according to varying wind direction

Xie 2011 – BT Tower wind data

- 15 min tracer release at fullscale from 16:30
- 30 min sample from 16:30 to 17:00
- 10 Hz data in 30 second averages from BT Tower

Fig. 6 30-s averaged wind magnitude U and direction θ (bearing clockwise to the Marylebone-Rd direction, i.e. x_t in Fig. 1) at the BT Tower top with a mark indicating 15-min release duration

Xie 2011 – tracer concentrations

Xie 2011 tracer distribution

- Contours of 30min averaged concentration
- c) 30min averaged data
- d) 30 sec averaged data

0.5000E-06 0.4737E-06 0.4474E-06 0.4Z11E-06 0.3947E-06 0.3664E-06 0.3421E-06 0.3158E-06 0.2895E-06 0.2632E-06 0.2368E-06 0.2105E-06 0.1842E-08 0.1579E-06 0.1316E-06 0.1053E-06 0.7695E-07 0.5263E-07 0.2632E-07 0.0000

London-based research projects

DAPPLE (2002-2009) – street level dispersion REPARTEE (2006-2007) – vertical pollutant distribution ACTUAL (2009-2014) - building design interactions with urban climate at a range of scales ClearfLo (2010-2013) – air quality at city scale

Mesoscale modelling

CALCULATED FIELD: sqrt(a*a+b*b) XBCBC Atmos u wind on model levels b grid at 360.0 metres At 19Z on 25/ 7/2012, from 04Z on 25/ 7/2012

.5

2

3.5

5

6.5

8

9.5

11

12.5

Courtesy Humphrey Lean, MetOffice Reading

- Regional and city scale flow causes low frequency perturbations
- Numerical Weather Prediction (NWP) models
- Grid typically 12, 4, 1.5km
- 25th July 2012, 19:00

 sea breezes cross
 London

XBDUE Atmos w compnt of wind after timestep at 293.3 metres At 14Z on 25/ 7/2012, from 18Z on 25/ 7/2012

-3.5572

-1.8531

-0.1491

1.555

3.259

4.963

6.6671

25th July 2012

Vertical velocity at 293m

Unified Model, 100m grid resolution

LES mode

Urban surface heat flux parameterization

Enhanced roughness

Thanks to Humphrey Lean, UK Met Office

ACTUAL: observing flow at range of scales

Doppler lidar 30th September 2011

Wind-speed Potential temperature 12z 12z 2500 2000

Met Office Operational UKV model

Potential temperature Wind-speed

Wind speed (ms⁻¹)

(m) H

n

Potential temperature (K)

London-based research projects

DAPPLE (2002-2009) – street level dispersion REPARTEE (2006-2007) – vertical pollutant distribution ACTUAL (2009-2014) – building design interactions with urban climate at a range of scales ClearfLo (2010-2013) – air quality at city scale Refresh (2013-2018) – human-centred building design, coupling indoor-outdoor environments

Refresh @ Silsoe autumn 2014

Thanks to Hannah Gough PhD student @ Reading

Refresh CFD simulations... work in progress

Conclusions

- LES reproduces unsteady urban turbulence well pay attention to inlet conditions!
- Current mesoscale model capability reasonably good at capturing city flow features above building height
- Combination of windtunnel and fullscale observations powerful
- Next step: analyse impact of all flow scales on ventilation
- Please visit <u>www.actual.ac.uk</u> to see more London data! j.f.barlow@reading.ac.uk