

breglobal

Analysis of Building Performance using Computational Fluid Dynamics (CFD)

Richard Chitty

Content

- Computational Fluid Dynamics (CFD)
- Natural Ventilation System
- Wind Application
- Fire Safety Application

Conclusion

CFD modelling - in one slide

- Discretise geometry
- Select physical submodels
- Apply boundary conditions
- Solve coupled equations
- Process solution data

conservation equations imposed at each mesh element

breglobal

CFD study of a Novel Naturally Ventilated Building

BRE Environmental Office Opened 1997

Ventilation system

- Cooling is achieved by:
 - Cross ventilation
 - Groundwater cooling

breglobal

- Exposed ceiling slab with air channels
- 5 external ventilation shafts

 CFD simulations were undertaken to study the environmental conditions in the first-floor open plan office during a warm summer day with a light southerly breeze

- ambient air = 24°C
- wind speeds of 0.5 m/s & 1.5 m/s (at 10 m height)
- ceiling channels open to the outside
- external shaft windows open
- cooling by the ceiling slab
- 20 W/m² thermal load

<mark>bre</mark>global

Ventilation shafts

Air is drawn from the office space and upwards through the shaft with the assistance of:

- wind flow across the top
- solar warming of the glass panels
- a low power fan inside the shaft

Little understanding of their actual effect when the building was constructed

CFD simulations

- A 'slice' of the building and external atmosphere has been simulated, allowing
- fine numerical resolution
- interaction of the breeze with the building to be modelled, removing the need for assumed pressure coefficients.

External breeze

An inlet boundary condition placed upstream to provide a logarithmic wind profile

breglobal

CFD Simulations using CFX-5

- Fully coupled momentum-pressure solver, eliminating need for pressure-correction
- Unstructured numerical mesh of triangular surface elements, boundary layer prisms and tetrahedral volume elements
- Symmetry boundary conditions either side of the modelled 'slice'
- 'Standard' k-ε turbulence model
- Volume heat sources to represent vdu's and people
- Boussinesq buoyancy approximation

CFD Simulations

- 1.5 m/s breeze
- outside temp at 24 °C
- ceiling slab at 21 °C
- shaft panels at 29 °C

27.0 26.0 25.0 24.0 23.0

ACH⁻¹ ≈ 7

The building design specification states a maximum office temperature of 25 °C for 95 % of the working year

Summary of conclusions

- A parametric CFD analysis has provided additional insight into the summer time operation of the BRE's Environmental Building
- With a light warm breeze and a combination of cross- and external shaft ventilation, conditions inside the first floor office shown to be acceptable
- Air change rates quite high in the presence of a 1.5 m/s breeze
- Solar heating of the external shafts not critical, as assumed in the building design
- 'Hot' daytime operation would likely require trickle ventilation and, in some instances, groundwater cooling (as happens in practice)

Wind Engineering

Background

- Wind tunnel technology well established
- CFD now provides an alternative/complimentary tool
- BUT, wind engineering community has reservations

Bluff Body Aerodynamics

- Buildings are bluff bodies within the surface boundary layer, generating:
 - stagnation
 - separation
 - reattachment
 - vortex generation

- Flow field is inherently unsteady
 - time-averaged flow field may be quite different to the instantaneous one

Gloucester Road Development

1:200 scale wind tunnel model of city centre development

1.2 million element CFX-5 model

SST turbulence model

Gloucester Road Selected Wind Direction

Impingement, separation, re-circulation, stagnation etc all present

Gloucester Road Pedestrian Velocities (1.2m)

breglobal

Comments

- Wind tunnels still have an important role
 - unsteady phenomena
 - boundary layer generation
- COST best practice guide

"Blind" CFD simulation of a fire experiment

Part of CIB W14 programme

- Design specification issued
 - experiment details
 - scenario to be modelled
- 'Blind' predictions made and submitted
- Experimental measurements released
 - comparison with predictions made
 - new 'open' predictions allowed

Fire experiment

- Conducted at VTT in 1980s
 - compartment with single opening
 - concrete block construction

- wood crib fire sources
- measurements
 - temperature
 - gas species
 - wall fluxes

Fire experiment

view from back of compartment

Fire Experiment

Two softwood cribs – Fire peaks at 5 MW after 25 minutes

40 mm 40 mm 40 mm 40 mm 40 mm

Fire simulations do not usually predict fire size so this was part of the input data

breglobal

Experiment: 8 minutes

Experiment: 38 minutes

- Room flashed over
- Flames emerging from window

Experiment: 48 minutes

JASMINE

- Finite volume CFD fire model
 - developed at FRS for more than 20 years
 - Based on early version of PHOENICS
 - validated for various smoke movement applications
- Six-flux radiation model
- Standard k-ε turbulence model
 - with buoyancy modifications
- Specific heat & density
 - functions of species and temperature
- Solid surface temperature calculation
 - one-dimensional quasi-steady conduction approximation
- Two-second time-step
 - full two hour simulation

Geometry and Mesh

• Domain extended into Test Hall

- 46,000 cells
 - finer grid at solid boundaries
 - grid sensitivity study with 370,000 cells

Combustion Model

- Simplified crib
 - fuel released from top surface

$$\dot{Q} = \dot{m} \Delta H_{eff}$$

• Approximate one-step chemistry

 $CH_2O + O_2 \rightarrow CO_2 + H_2O$

• Eddy dissipation reaction mechanism

$$S_{fu} = -\rho \frac{\varepsilon}{k} C_R \min\left(m_{fu}, \frac{m_{o2}}{s}\right)$$

brea

Predicted temperature at flashover

eglobal

Protecting Per

Predicted & Measured Temperature

• Rear thermocouple tree

breglobal

Predicted & Measured Temperature

Centre thermocouple tree

Predicted & Measured Temperature

Corner thermocouple tree

Effective Heat of Combustion

 Constant value used for simulation

breglobal

Adjusted Temperature Prediction

 Prediction 'modified' according to varying heat of combustion

breglobal

Predicted & Measured Fluxes

 Conduction fluxes into ceiling and side wall

Conduction Model • Flux balance at surface $\dot{q}_{conv}'' + \dot{q}_{rad}'' = \dot{q}_{conduction}''$ radiation

One-dimensional quasi-steady conduction approximation

$$\dot{q}_{conduction}^{\prime\prime} \approx k \frac{\left(T_w - T_0\right)}{\delta} \approx 2 \left(\frac{k}{\rho c} t\right)^{\frac{1}{2}}$$

Outcome of comparison

- Overall agreement between prediction and measurement good
 - peak temperatures within 15%
 - species concentrations similar
- Temporal shift and discrepancy in decay stage – variation in ΔH_{eff} an important factor here
- Solid boundary heat fluxes under-predicted during 'flashover'
 - 'simple' quasi-steady conduction model
 - soot formation

Conclusions

- CFD has been demonstrated to accurately simulate a number of building related problems by comparison with measured data.
- BUT if it goes wrong...

Ventilation Open a window, loose energy

Wind Discomfort injuries

Fire Large financial losses People die

Conclusions

- Fire and Low Energy Technologies
 - Better insulation (not just U value)
 - Better air tightness
 - Chilled ceilings
 - Phase change materials
- Some CFD issues
 - Free software(e.g. OpenFoam, FDS)
 - Training
 - Data sources
 - Garbage in = Garbage out

Drec

Acknowledgements

Colleagues from BRE

- Stewart Miles
- Philippa Westbury
- Geoff Cox
- Suresh Kumar

