REAPING THE BENEFITS

AVOIDING THE PITFALLS

Martin Ratcliffe Visiting Research Fellow, Centre for Energy Studies at LSBU Head of Roger Preston Environmental

CIBSE/ASHRAE Meeting LSBU May 12th 2004

Martin Ratcliffe LSBU/Roger Preston Environmental

1

Objectives

- Show that glazing
 - is important for occupant well being and productivity
 - can reduce energy consumption
 - can lead to thermal & visual discomfort
- Give guidelines on design of glazing

Well-Being

- View Out
- Preference for Natural Light

Well-Being

- Feel Valued
- In touch with outside world
- Photophysiological Effects

Well-Being

Increase in Productivity

Daylight

About 100 Lumens per Watt

- (artificial lighting = 50 Lm/W)

Daylight Factor

Indoor Illuminance Outdoor Illuminance

Daylight

Daylight and glazing

Environmental

Lighting Energy

potential energy savingswithdimming photoelectri

Martin Ratcliffe LSBU/Roger Preston Environmental 11

Overall Energy

Martin Ratcliffe LSBU/Roger Preston Environmental 12

Shading Coefficient

SC = SWSC + LWSC

Solar Gain through actual glazing Solar Gain through clear single glazing

Solar Heat Gain Factor

"g-value"

Total Solar Gain Incident Solar Intensity

Peak Solar Gains - UK

Martin Ratcliffe LSBU/Roger Preston Environmental 17

Peak Solar Gains - UK

Thermal Comfort- Radiant Temperature

SHORTWAVE

depends on

- transmittance of glass
- external shading
- internal shading
- sun position

Longwave

- Depends on
 - glass/blind surface temp
 - glazing absorptance
 - window area
 - distance from glazing

Maximum Dry Resultant Temperature 100% glazing

Asymmetric radiation

ISO 7726

Variation in Asymmetric Radiation with distance from window and Glass Surface Temperature

flexibility!

Solar gains vary with – Weather conditions – Time of year – Time of day

flexibility

Want a glazing system that can cope with this:

Variable solar performance

Possible solutions?

- Ventilated cavity
- Adjustable external shading
- photochromic

Ventilated cavity

summary

- Opportunity to reduce energy consumption
- Improve occupant well being
- Improve productivity
- Potential for discomfort on sunny days
- Standard calculations not sufficient
- Need an adaptable system of solar control