

Building Energy Efficiency

Environmental, Social and Governance (ESG) aspects in Infrastructure Asset Management

Dr Ioanna Papanikolaou CEng MICE

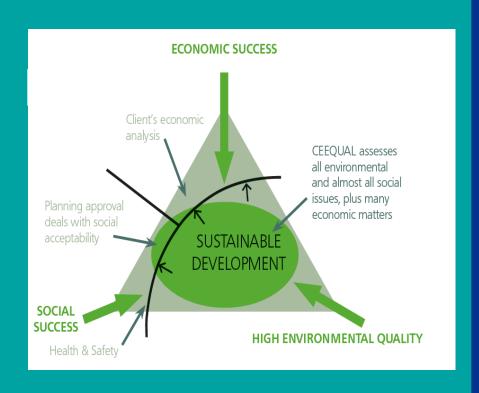
10 March 2023

Session contents:

- 1 Sustainability definitions and context
- 2 Sustainability and InfrastructureAsset Management
- 3 Future Directions of AM

UCL

Background and key definitions



Setting the Context

UCL

Sustainability

3 Pillars = People, Planet, Profits

ESG

Governance and investment framework

E ENVIRONMENT

S SOCIAL

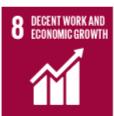
G GOVERNANCE

UN Goals

17 sustainability goals

Call for action by all countries to to promote prosperity while protecting the

planet



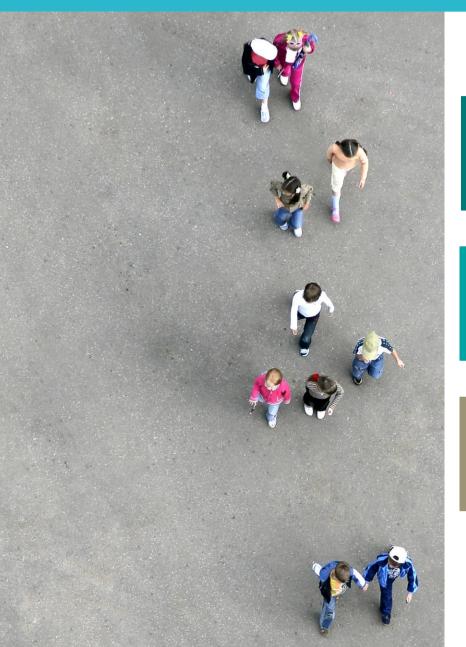
Environment

Climate Change Resilience

Biodiversity

Waste

Carbon emissions


Materials

Circular Economy Water resources

Energy transition

Social

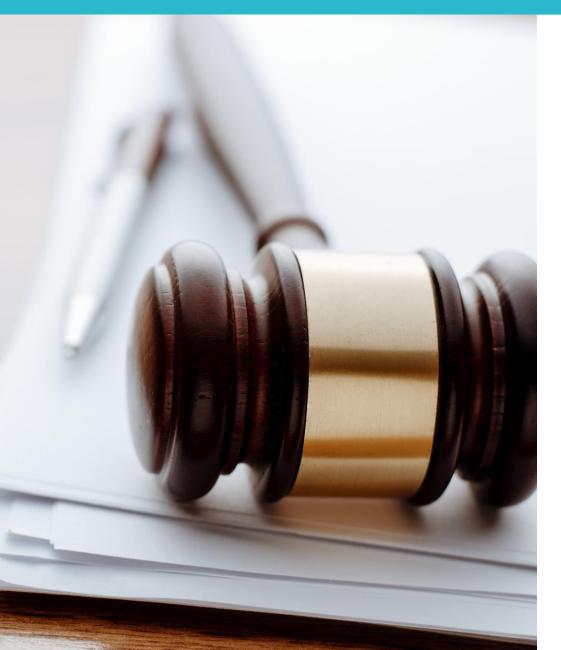
EDI

Data Security

Ethics & Integrity

Supply chains

Social value


Health & Safety

Financial access Wellbeing

Labour

Governance

Ethics

Competition

Financial disclosures

Corporate Governance

Accounting

XBT

Environmental Assessment Methods

- Continuous drive for incorporating sustainability and environmental stewardship goals as part of IAM
- Stand-alone systems / tools for evaluation of sustainability solutions: **Buildings:**

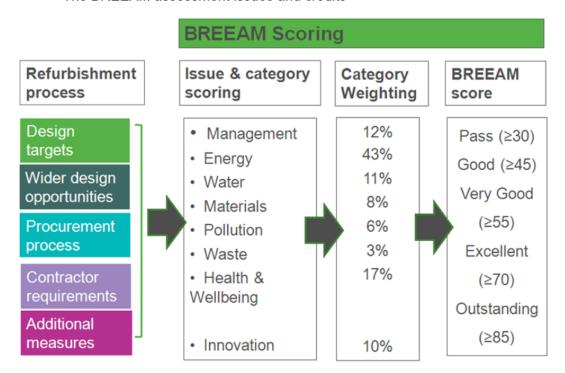
```
-BREEAM (UK/Global), LEED (USA)
```

Infrastructure:

-CEEQUAL (UK/Global), ENVISION (USA), IS Rating (AUS)

New tools incentivised by proliferation of Green finance:

- -<u>S&P Global Ratings Green Evaluation</u>
- Increasing the sophistication of IAMS in terms of sustainability and environmental stewardship is one of the future directions of IAMS

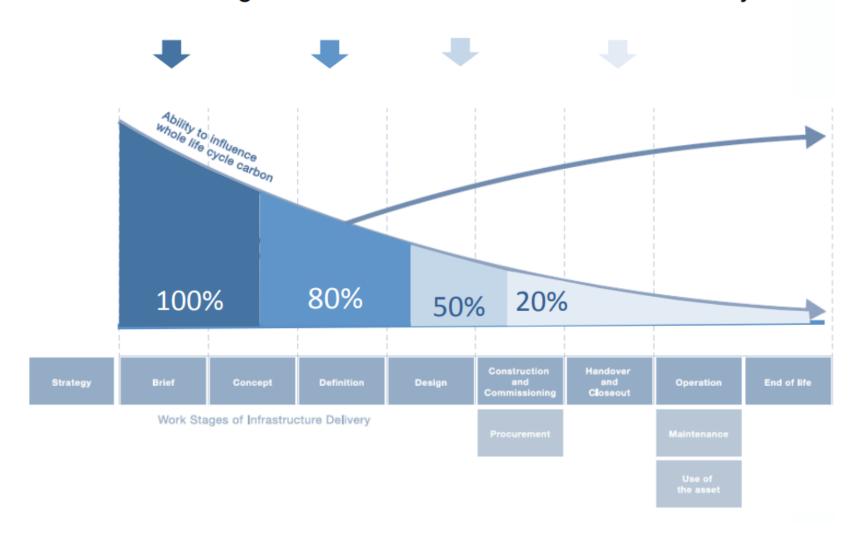

Environmental Assessment Methods

Sustainability Assessment frameworks: BREEAM **Scoring and Rating**

There are a number of elements that determine the overall performance of a domestic refurbishment project assessed using BREEAM. These are as follows:

- · The BREEAM rating level benchmarks
- · The minimum BREEAM standards
- · The environmental section weightings
- The BREEAM assessment issues and credits

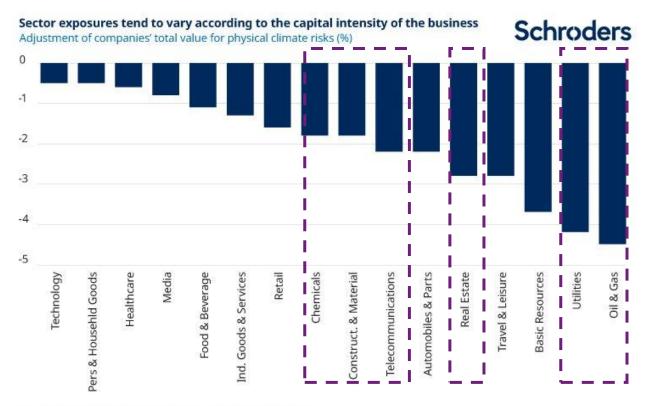
Source: BRFFAM website



2 – Sustainability and Asset Management

Circular economy

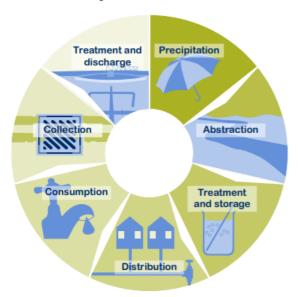
'Build nothing' 'Build less' 'Build clever' 'Build efficiently'

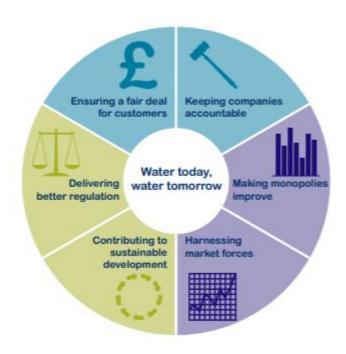


Climate change

Climate change will disrupt asset-intensive organisations

- Oil & gas and utilities most exposed to the physical impact of climate change.
- Potential cost of insuring their physical assets equates to more than 3% of their market values.


Role of Asset management

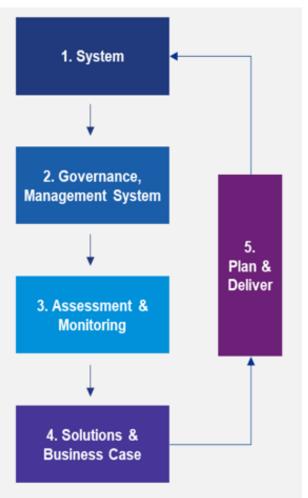


Asset management has an important and enduring role to play in sustainable development

- Effective management of assets can be a key enabler for economic wellbeing and many societal structures
- Potential impact on the environment of assets and asset management activities
- The approach to whole life evaluation of risks and costs and performance of assets

To deliver sustainable water, we need action at every stage of the water cycle

Source: Delivering sustainable water – Ofwat's strategy


Building Resilience

Building **resilience** involves a comprehensive end-to-end approach

- Industries are more inter-connected
- Minor problems in one system can have a big impact
- Example electricity and transport

Building Resilience - Transport

Physical risks of climate change

I Hydrodi Hoko or ominato oriango	
Climate impact	Potential impact on transport system
Increased summer temperatures	 Rail track buckling Change in required airport runaway length Overheating of diesel engines
Increased winter temperatures	Reducing constraints for road and rail maintenanceChanged construction seasons
Increased precipitation / flooding	 Flooding of land transport infrastructures Embankment collapse, Flooding of underground transit systems
More frequent extreme winds	 Damage to infrastructure on roads, railways, pipelines, seaports, cable bridges, etc Disturbance to transport electronic infrastructures, signalling, etc. Reduced safety for vehicles driving
Sea level rise and sea storm surges	Erosion of coastal highwaysHigher tides at ports/harbour facilitiesLow level aviation infrastructure at risk
Change in frequency of winter storms	Less or more snow / ice for all modes
Reduced arctic sea ice cover	New northern shipping routesReduced ice loading on structures, such as bridges or piers
Earlier river ice breakup	Ice-jam flooding risk

Source: European Commission

Building Resilience - Transport

Transitional risks of climate change in the Transport Sector

Climate impact

Potential impact on transport system

Policy

- Transition to net Zero
- · Car free days/zones
- · Increased demand of road user charging
- · New regulatory environments

Carbon Tax

- · Increased tax for GHG emitting modes of transport
- Allowable solutions

Technology Shifts

- Alternative energy sources
- · Electric vehicles
- · Provision of charging infrastructure

Market Shifts

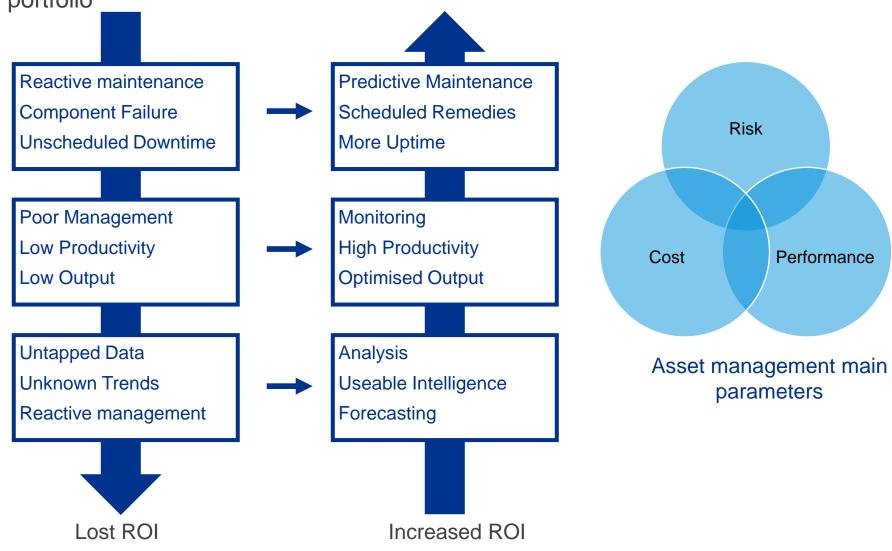
- · Decentralised energy model
- · New revenue models

Reputational Impacts

· Customer and investor expectations

AM Solutions and Business Cases

Energy hierarchy of cost-effectiveness


- Energy demand: reducing the need
- Energy-efficient systems: delivering the demand efficiently
- Low carbon energy supply: generating energy minimising CO₂ emissions
- Emerging technologies such as blockchain

AM Solutions and Business Cases

Asset Management can help increasing Return on Investment on your asset portfolio

3 – Future directions of Asset management

Future Directions for IAM (1)

- IAM presents opportunities for improvement and advancement due to changes in technology, changing needs and changing user demands
- Improvements due to continued use of IAM such as better performance models, better segmentation, better identification/location, etc.
- Advances in technology with major impact on IAMS:
 - Digital Twins
 - Faster and more convenient databases
 - Smart systems, IoT (sensors)
 - Better communications technology
 - ...
 - -New ideas yet to come

Future Directions for IAM (2)

UCL

- Advances made possible by the use of IAMS:
 - -Use of new materials
 - Use of new technologies
 - –Institutional improvements
 - –Integration of facilities
 - -Automated data collection
 - -Improved resource allocation
 - **—** ...

- Connectivity and dependence between assets and industries
- Resilience

Future Directions for IAM (3)

• KPMG Emerging Trends in infrastructure Report

Questions?

Contact details: Ioanna Papanikolaou

https://www.linkedin.com/in/dr-ioanna-papanikolaou-0a9b0462