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Presentation Content

Market Trending
Productivity
integrity
& Bottle necks
Getting the balance right
Optimising CFD a sparse matrix
Direct optimisation methods
Modelling the small scales
Large scale HPC example from Wirth Research (VWT)

Summary

3 © 2011 ANSYS, Inc. July 1, 2014



Accuracy and Robust Design

4

* “Good enough” is NOT good enough anymore.

* Market leaders are making products which outperform

rivals.

* Penalty for making mistakes has never been higher.

© 2011 ANSYS, Inc.

July 1, 2014
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The tools

Optimisation

Direct optimisation —_ Larger more detailed models

Smaller models can be run
faster

Response surface
assessment in parallel of

multiple design points.

Morphing

nnnnnnn

vavavavavava
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WSS Obstacles
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Optimisation

Adjoint+ Geometry morphing
Parametric design exploration

7 © 2011 ANSYS, Inc. July 1, 2014



aq,

What is the Adjoint Solver? =

In a Nutshell

It can tell you from a single run how you should change a geometry in
order to improve it

An Adjoint Solver can be used to compute the derivative of an engineering quantity with
respect to all of the inputs for the system.

These derivatives/sensitivities can be used to

L provide extremely valuable engineering insight

L optimize system performance
L detecting areas in the flow where discretization

errors can potentially have a strong effect

Once the adjoint solution is computed it can be used to guide intelligent design
modifications to a system by a simple gradient algorithm for design optimization.

8 © 2011 ANSYS, Inc. July 1, 2014



Adjoint driven optimisation

Morphing CFD Analysis
using MMO
Global
Local optimum
optima
= e ./x5
B %
ac;

i I ) Adjoint Solver
optimum - ‘.

AS sensitivity
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Velocity

observable value = 9.76
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Design Exploration
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Problem description

14

* Flow in a theatre, 3 tiers of seating

*  Fresh air inflow at steps under seats

e Uniform flow produces non uniform temperature
distribution

© 2011 ANSYS, Inc.

July 1, 2014
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Problem description

* Fit 2 linear velocity profiles: one profile for
within a tier and one for between tiers

 Parameterise each profile with respect to
ratio of minimum velocity to maximum
velocity

e Seek to optimise these parameters to
minimise the temperature variation over a
range of monitor locations
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Optimisation set up

16

DOE tool will generate a set of

design points to sample

available

Table of Schematic B2: Design of Experiments (Ce

Various sampling strategies are

% Response Surface Optimization

S wN - dq

(2 Design of Experiments ¥y .
[2 Response Surface "
@ Optimization o

Properties of Qutline AZ: Design of Experiment

= Design Points

Preserve Design Points After DX Run “

= Design of Experiments

Design of Experiments Type Central Compaosite Design =

i
2
3
4 = Failed Design Points Management
5
B
7
8

Design Type Central Composite Design

© 2011 ANSYS, Inc.

July 1, 2014

A B c D
1 Mame .= ] P7-StepFrontSias ~ | P8 -TierFrontBias ~ | P9 -TempVar (K) ~
2 1 0.5 0.55 F
3 2 0 0.65 F
4 3 1 0.65 d
5 4 0.5 0.3 F
5 5 0.5 1 F
7 & 0 0.3 d
5 7 1 0.3 F
g a 0 1 d
10 q 1 1 F

Optimal Space-Filling Design
Box-Behnken Design

Custom

Custom + Sampling

Sparse Grid Initialization

Latin Hypercube Sampling Design

Data analysis can then be
submitted to compute cluster in
parallel
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WSS Response surface | T

3 ||:| Response Surface F ‘|
4 | (@) Optimization Ty

e Aresponse surface is fitted to the design point data

* Goodness of fit reporting displays how well the response
surface fits the data (None parametric regression)

. Plot response surface against up to 2 selected parameters at a
time.

Response Chart for P9 - TempVar v B X

DOE Points [

Predicted from the Response Surface [K]
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Working with Response Surfaces

Example of poor fit of standard response surface to
design points
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Optimisation

2 | [H Design of Experiments v 4
3 |ﬂ] Response Surface v 4
4 |@ Optimization =] ‘l

Optimiser cell is used to specify objectives and constraints

B F Optimization

(1]

E Objectives and Constraints

PSS P T Y O e

&) Minimize P3

Table of Schematic B4: Optimization

A

B

E F

MName

Parameter

Ohjective

Caonstraint

Type Target

Type Lower Bound

Upper Bound

L[

Minimize P8 | P9 -TempVar

Minimize [

Mo Constraint ;I

Select a Parameter | No Objective

Minimize
Maximize
seek Target

Optimiser samples response surface and makes suggestions for

optimum location

Can feed back suggestion as a refinement point for the response

surface to verify and improve the fit

— Repeat until the predicted and calculated optimum have sufficiently
converged. For Kriging this can be automated.

= Candidate Points
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Candidate Point 1 Candidate Point 2 Candidate Point 3
P7 - StepFrontBias 0 0.1135 0,2225
P8 - TierFrontBias 0.68085 0.68863 0,53668

PS - TempVar (K)

M, 14013

S5 1.4595

ra 1.5331




Uniform flow

Optimised flow
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High end HPC example
High resolution Architectural CFD
Courtesy of Wirth Research
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Chicago, 10km diameter model.
3 interesting buildings highlighted which are focussed on in following slide
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e The Chicago cityscape model

e Refined down to 10cm on key details of the three key buildings, with
general resolution on those building's of ~30cm, with prismatic layers
everywhere.

° The whole domain came to ~600million cells.

e solved on 432 cores over 36 nodes. The RANS runs take ~10hrs, and
the DES ~5days, using Fluent v15.

e A typical study would involve RANS wind angles with some DES
dependent on objective

e  Wirth Research have 3500 cores in their compute cluster, co could solve
approx. 10 jobs similar to this simultaneously.
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Iso-surfaces of vorticity, coloured by total pressure, showing different
type of vortical structures seen around different designs of tall buildings.
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10m high slice coloured by velocity
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ALSESE Summary

Engineers are facing many challenges and simulation can
play a significant part in this.

Increasing realism and detail is being captured using high
fidelity tools.

There is increasing adoption of robust design methods
driven by both software developments and
hardware availability.
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