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Why Urban Agriculture?

ds

transpiration photosynthesis

0,, CO,
released to

PAR ‘A

Water lost by
transpiration

Capillarity €O, stored/used
absorbed for growth
from air

Water

absorbed by

roots Wa‘rerj‘

impact: cooling, increase Impact: net removal of
in moisture content of air CO, addition of O,

The . Gambridge Centre for EE UNIVERSITY OF
Alan Turing Smart Infrastructure G CAMBRIDGE

|I'IStItutE & Construction Department of Engineering



33/02/2022

ds

Research Challenges

e * models of heat & mass

h exchange and plant growth.
Largely empirical and limited

to specific crops

* No models that couple
—7) greenhouse environment with
"/ standard buildings

* Monitoring difficult as
environments are often

bespoke
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Growing Underground: our poster child... :-%

Derelict Tunnels Initial Farm Trials Commercial Farm (2015-)
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Increase yield and minimise energy
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— 89 monitored
variables

— 8 data loggers

— 2 APlIs

— Manual data
collection

Data logger
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Automatic wired
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Manual
data transfer

Data storage
server
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Sensor St A T

Network
iImplemented

. Staircase
since 2016 ,,
YA
Sensor Key Name of logger
farm

B Temp, RH, CO2 Advantix/ Raspi 1,2
2 Temperature, RH, CO2, Light Raspi 8
\ Temperature, air velocity Raspi 6,7
©® Camera Raspi 3-5

é Raspberry Pi box (needs socket)
<< USB/ethernet cable

P~ . .
‘2" Wifi router/ access point
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CROP Architecture

1 Users can access the CROP
platform and database using multiple
ways.

2 CROP web application is the main
interface for the digital twin. Users
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can explore collected heterogeneous
[oT sensor data, analyse farm
conditions at various points in time,
use the developed 3D visualisation
tools.

3 CROP database is constantly
updated from multiple streams of
data: Zensie API, Stark energy usage
platform, custom made (Raspberry P1)
sensors, and others.

4 CROP machine learning services
integrate automated prediction and
calibration models into the platform.
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GROWING UNDERGROUND, CLAPHAM, LONDON
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GROWING UNDERGROUND CLAPHAM, LONDON
1:46 16 June, 2020
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Temperature forecasting: %
too hot to grow?

— Temperatures have changing mean, and
an irregular, changing daily shape

— Energy readings are used to infer the
lighting schedule as this is the main
process behind the temperature changes

— Bayesian dynamic linear model with

Average external
temperature (°C)

» data-driven seasonal component handles
10 typical and atypical forecasts, important
. b for optimising yield

Daily change in temperature (°C)

— Flexible to new data streams

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour of day in the farm

Digital twin: use model to suggest operational changes and feedback to improve model
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Temperature forecasting %
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Typical lighting days: bespoke and Atypical lighting days: data-driven method can
traditional forecasts are similar forecast the effect on temperature by utilising
the unique lighting pattern (lights switched on
much later than usual)
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Meaningful bespoke outputs

. Turn ventilation
setting to 3
0.4 ACH 1.9 ACH o’clock
LO HIGH

0ACH 5 ACH

FANS SPEED
SET POINT

Recommend to
place peashoots
iIn zone 6

Lights were on

for 20 hours
yesterday




Continuous calibration of physics-based model }%

Physics-based model is used to simulate tunnel environment and to model future scenarios
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Benefits of the Digital Twin

ds

Continuously monitored data are uploaded to a central database for ease
of access

Data are extracted from the database for continuous calibration of the
physics-based model

The physics-based model with calibrated parameters is used to simulate
potential scenarios for mitigation of undesirable environmental conditions
Farm operators are alerted to potential problems and proposed remedial
actions
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Benefits of the digital twin

_ Data-centric
Operational statistical

decision-making YLEER
assistance

Data
Data mwp o4 processing & Meaningful outputs
analytics

Data-centric
physics-based
models

Forecast future
scenarios
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Questions?



