DCE The role of NCM (compliance/EPC) software in modelling of low energy buildings

Jose Ortiz Director of Building Energy Modelling, BRE.

Presentation Overview

- Building regulations are becoming a key driver to low energy buildings.
- Low energy buildings rely on innovative technologies that are potentially more complicated to model
- Modelling these features is potentially an even bigger challenge to compliance tools
- Is it technically possible, within the compliance framework, to adapt the current simplified tools for the more demanding modelling requirements of future building features required by tighter building regulations?

Presentation Overview

- Energy modelling: Proving the design works vs. assessing energy performance
- Computational simplifications in compliance tools are available from the adopted CEN algorithms
- but the key driver for simplicity is the requirement for an 'uncomplicated' approach for the majority of 'simple' buildings
- Is the industry ready for the increased complexity of more detailed modelling options?
- Future developments of compliance tools

Building Regs. driving low energy buildings

 Current building regulations are enforcing the implementation of energy efficiency measures in buildings, within the limits of cost effectiveness

 Notional Building 2010 (NB10): Mainly lighting and HVAC systems for cooling for additional obvious cost effective energy efficiency measures.

Building Regs. driving to low energy buildings

- Future improvements (25% every 3 years) in forthcoming building codes will have to go beyond energy efficiency
- Expectation that NB13 (Notional Building 2013) includes renewable sources to reduce associated TER
- NB16 will need a significant amount of renewable energy generation, cross building sectors, in order to set an additional 25% target
- and so on...

Low energy buildings features are potentially more complicated to model

- Renewable energy sources can be very variable, within an interval of less than one hour
- Passive approaches (innovative ventilation strategies, passive facades, etc), usually rely on complex air flows within the building,
- Modelling air flows (highly dependent on indoors and outdoors conditions) that are very complicated to model...
- requiring CFD analysis when modelling a design concept as a proof that it works

Modelling these features is potentially an even bigger challenge for simplified tools

- This presents an even bigger challenge to software tools designed specifically for compliance and EPC assessments, due to their intrinsic simplicity
- It is more difficult, requiring additional pre-processing of more detailed data (hourly) to produce integrated values that can be used in the more simplified procedures of these methods,
- But complexity can be significantly reduced when the purpose of the modelling is not to prove the design works but only to assess energy performance

Energy modelling: Proving the design works vs. assessing energy performance

- Proving the design works?...
- Detail DSM modelling is required,
- Probably with special zoning needs and specific input parameters,
- It might require supporting CFD analysis,
- Uncertainty quickly grows, thus requiring sensitivity analyses
- Increasing time and costs (also high level skills),
- Worthy when proving a design will work and to compare with alternative solutions...

Energy modelling: Proving the design works vs. assessing energy performance

- If DSM approach is followed but not enough resources are allocated,
- There is a huge risk of inconsistency and disparity in results
- There is a huge risk of errors...
- Typical scenario of rubbish in rubbish out
- Approach is undermined...

Energy modelling: Proving the design works vs. assessing energy performance

- Assessing the level of energy performance?...
- There are assumptions and simplifications available,
- that do not drastically influence the results,
- More simplified approaches require less time, budget and skills,
- Thus, affordable for compliance analysis, low-medium profile buildings, etc
- Not suitable for design

Computational simplifications are available from the adopted CEN algorithms

- Is it technically possible, within the compliance framework, to adapt the current simplified tools for the more demanding modelling requirements of future building features required by tighter building regulations?
- CEN Standards already include examples of successful computational simplifications: Infiltration, SES, Wind energy, ...
- Some are also adopted by the more complex DSM tools
- Latest implementation of ISO standard intermittency calculations show a much closer alignment between simplified tools and DSMs for annual energy demand/consumption figures

Key driver for simplicity is the requirement for an 'uncomplicated' approach

- but the key driver for simplicity is the requirement for an 'uncomplicated' approach for the majority of 'simple' buildings
- that would not otherwise require design support through the use of dynamic simulation models
- ~85% hits on EPCgen.net service use SBEM engine
- ~50% hits on EPCgen.net service use iSBEM interface
- ~15% hits on EPCgen.net service use DSM engines

Future developments of compliance tools

- Is the industry ready for the increased complexity of more detailed modelling options?
- There has been a significant cultural change in the last 5 years with the implementation of 2006 of building regulations and the generalised introduction of the performance approach
- There was initially a considerable step change for many but there is now much more familiarity with energy modelling/calculation concepts
- This trend will continue thus allowing more complex approaches to be adopted

Future developments of compliance tools

- Simplified Hourly calculations using CEN methods?
- Maintaining simplified user interface
- Further developments on core CEN Standard to support EPBD implementation and tighter Building Regulations

DCE The role of NCM (compliance/EPC) software in modelling of low energy buildings

Jose Ortiz Director of Building Energy Modelling, BRE.