

DYNAMIC MODELLING FOR OVERHEATING & COOLING ANALYSIS

CIBSE BUILDING SIMULATION GROUP 8TH FEBRUARY 2017

OVERVIEW

- 1. BACKGROUND ON OVERHEATING, PLANNING POLICIES AND GUIDANCE
- 2. OVERHEATING RISK ASSESSMENT PART L 2013
- 3. GLA'S GUIDANCE ON OVERHEATING & COOLING
- 4. OVERHEATING MODELLING
- 5. CASE STUDIES

BACKGROUND ON OVERHEATING POLICIES AND GUIDANCE

- Part L 2013 Criterion 3
- Greater London Authority (GLA)
 - London Plan Policy 5.9
 - Sustainable Design and Construction
 SPG (section 3.2.4)
 - Guidance on preparing energy assessments (2016)
- CIBSE Guide A (2015)
- CIBSE TM 52
 - Naturally-ventilated buildings

Temperature distribution in London, August 2003

BUILDING REGULATIONS PART L OVERHEATING ASSESSMENT

Design - Draft

Check	Evidence		Produced by	OK?
Criterion 3: the dwelling has appropriate passive control measures to limit solar gains				
Does the dwelling have a strong tendency to high summertime temperatures?	Overheating risk (June) = Slight Overheating risk (July) = Medium Overheating risk (August) = Medium Region = Thames Thermal mass parameter = 250.00 Ventilation rate in hot weather = 2.00 ach Blinds/curtains = Dark-coloured curtain or roller blind		Authorised SAP Assessor	Passed

"Overheating is not fully assessed by carbon dioxide emission models, therefore developers are encouraged to **undertake dynamic thermal modelling** to ensure that their development does not overheat." (SPG section 3.2.3)

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
00AFoodBev1	NO (-39.9%)	NO
00AFoodBev2	NO (-40.9%)	NO
00DFoodBev1	NO (-65.9%)	NO
00DFoodBev2	NO (-69.6%)	NO
GBCinema	N/A	N/A
GBRetail1	NO (-59%)	NO
GBCinema	N/A	N/A
01DFoodBev	NO (-0.3%)	NO
01BOffice	NO (-34.7%)	YES
01BOffice	NO (-48.4%)	YES
00BOffice2	NO (-37.2%)	YES

GLA'S GUIDANCE ON PREPARING ENERGY ASSESSMENTS

- Local Boroughs refer to it for planning applications
- From March 2016
- Section 12: Cooling and Overheating
- Appendix 5: Domestic overheating checklist
 - Site features
 - Mitigating risks
 - Window opening limitations
 - Daylighting
 - Shading
 - Heating system (communal areas)

ENERGY PLANNING

Greater London Authority guidance on preparing energy assessments (March 2016)

MAYOR OF LONDON

MAYOR'S COOLING HIERARCHY

Minimise internal heat generation through energy efficient design

Reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls

Manage the heat within the building through exposed internal thermal mass and high ceilings

Passive ventilation

Mechanical ventilation

Active cooling systems

SWECO 🕇

PASSIVE MEASURES EXAMPLES

OVERHEATING RISK ANALYSIS

SAP2012 PART L COMPLIANCE REPORT

BRUKL PART L

DYNAMIC THERMAL MODELLING

- _ following TM49 guidance and data sets
- _ include outline of assumptions made

OVERHEATING MODELLING

- Consultation with design team early!
 - Daylighting
 - External Noise
 - Security
 - Internal Gains
 - Occupancy Profiles
- Methodology
 - Check local policies
- Avoiding overheating:
 - CIBSE KS 16: How to manage overheating in buildings
- Risk assessment based on:
 - CIBSE TM 52: The limits of thermal comfort: avoiding overheating in European buildings (2013)
 - CIBSE TM 49: Design Summer Years for London (2014)

OVERHEATING MODELLING

- CIBSE TM 49: Design Summer Years for London (2014)
 - LWC London Weather Central: use for developments within the Greater London Authority Central Zone (see map)
 - LHR London Heathrow: use for developments in urban and suburban areas outside GLA Central Zone
 - GTW London Gatwick: use for developments in rural and peri-urban areas around the edge of London
- 3 weather files (DSYs) to be analysed:
 - DSY1: 1989 (moderately warm summer)
 - DSY2: 2003 (long period of persistent warmth)
 - DSY3: 1976 (intense single warm spell)
 - Adaptability to climate change (future weather files)

Figure 0.1 London's Central Activities Zone and North of the Isle of Dogs

OVERHEATING MODELLING

CIBSE TM 52: The limits of thermal comfort: avoiding overheating in European buildings (2013)

- May to September
- Naturally ventilated buildings
- Pass 2 out of 3 criteria

Criterion 1 - 05 H2 Bed 2:

CIBSE TM52 Criteria (meet 2 of 3 to pass)		
Crit. 1: %Hrs T _{op} -T _{max} ≥1K (H _e)	Crit. 2: Max. Daily Deg. Hrs (W _e)	Crit. 3 (max. ∆T)
≤3%	≤6	≤4 K

Criterion 2 & 3 - 05 H2 Bed 2:

OVERHEATING MODELLING — RESIDENTIAL BUILDING

Impact of using TM49 weather files in the overheating assessment for the SW mid-floor living room:

- High-rise Tower
- Studio to 2 bedroom flats
- 40% glazing to wall ratio
- Work in progress in process of planning application

Weather File	CIBSE TM52 status
Old DSY 05	Pass
LWC DSY1	Fail
LWC DSY2	Fail
LWC DSY3	Fail

- Follows Mayor's Cooling Hierarchy
- London Borough of Islington
- Displacement ventilation
- Analysis for a projected climate scenario:
 - Use Design Summer Year (DSY) weather tape Islington 90th percentile for 2030s;
 - Additional design elements have been included to ensure that overheating is not an issue by using DSY Islington 90th percentile for 2050s.

- Islington 90th percentile for 2030s
- Islington 90th percentile for 2050s

0.25 ach

Thermal Performand	ce of building elements	Applied Values
	Wall	0.20 W/m²K
	Curtain Wall	Glazing — 1.4W/m ² K
U-values	oditani watt	$Solid - 0.80W/m^2K$
	Roof	0.22 W/m²K
	Floor	0.18 W/m²K
Thermal Mass	Walls Ceiling (exposed soffit)	35 kJ/m ² K (lightweight) 200 kJ/m ² K (heavyweight)
Glazing U-value	Floor (raised floor)	8 kJ/m²K (lightweight) 1.40 W/m²K
Glazing g-value	South / West / East Facade	0.33
(BS EN 410)	North Facade	0.45
Glazing Lighting Transmittance	South / West / East North	61 % 72 %
Office internal gains	6	Applied Values
Occupancy		1 person / 12m²
Sensible / Latent gain (W/person)		90 / 60
Lighting gain		6 W/m² (with dimming control)
Small power		15 W/m² (follow occupancy schedule)
Occupancy schedule		8am to 6pm with lunch break
Office Auxiliary Vent	tilation	Applied Values
Fresh Air supply (Part F)		10 l/s/person

Infiltration

Shading from largest trees

• Slight increase in number of dissatisfied people in the 2050s scenario

ACTIVE COOLING DEMAND

SAP2012 PART L COMPLIANCE REPORT

• Row 107 in section 8c of DER worksheets

BRUKL PART L

• 'HVAC Systems Performance': Actual and Notional

Average domestic cooling demand for July (kWh/m²)	Maximum domestic cooling demand for July (kWh/m²)
e.g. 105.20	e.g. worst case

	Area-weighted average building cooling demand (MJ/m²)
Actual building	e.g. 115.5
Notional building	e.g. 119.3

DYNAMIC THERMAL MODELLING RESULTS SHOULD ALSO BE REPORTED!

IN SUMMARY

- Attention to the guidance from GLA AND OTHER LOCAL AUTHORITIES
- The WEATHER FILE used impact significantly on the results
- Adaptation to CLIMATE CHANGE
- Design for OCCUPANT'S WELLBEING
- EARLY engagement with design team
- COMMUNICATION is key
- Consider design and client's aspirations
- Research of novel technologies to allow for CREATIVE SOLUTIONS
- Engage with manufacturers/suppliers, they are adapting to have their products applied to the virtual environment
- Overheating Working Group: Good Homes Alliance

THANKS FOR YOUR ATTENTION, ANY QUESTIONS?

Gabriela Costa (BArch, MSc, BREEAM Associate) Sweco

Senior Sustainability Consultant (Architectural)

1 Bath Road Maidenhead SL6 4AQ

gabriela.costa@sweco.co.uk www.sweco.co.uk

