



# RENEWABLE HEATING & HOT WATER WITH WOOD PELLETS

# Webinar 3 Practical implementation of pellet boilers in commercial buildings

Marcus Baker

www.ecohotwater.co.nz









# INTEGRATION WITH BUILDING DESIGN



## Aspects to consider for including pellet boilers in commercial buildings

- 1. Plant space
- 2. Pellet fuel storage space
- 3. Fuel delivery bulk and transfer to boiler
- 4. System heat load and design
- 5. Flue









# INTEGRATION WITH BUILDING DESIGN



#### **Boiler room space**

- Will it be single boiler or multiple in cascade?
- Is there enough room to have pellet store & boilers in same space?
- Distance to pellet delivery connection point (assuming blower truck)?











# BOILER ROOM SPACE





# BOILER ROOM SPACE





# 128kW ÖkoFEN boiler clearances

a: 200mm

b: 300mm

c: 300mm

d: 700mm

e: 2100mm

ENERGY

## BOILER ROOM SPACE



#### ÖkoFEN boiler space required, including clearances



256kW ÖkoFEN boiler 2 x 128kW back to back



us nz



## PELLET STORAGE OPTIONS





## PELLET STORAGE OPTIONS





2 x 8 tonne ÖkoFEN Flexilo









# PELLET STORAGE



#### Pellet storage space & placement

1 tonne pellets =  $1.55m^3 = 5.1MWh$ 

Store size dependent on:

- Space available
- Heat load & daily pellet consumption
- Delivery truck capacity & frequency of deliveries

Vacuum truck =  $15 \text{ tonnes} = 23\text{m}^3$ 

Vacuum truck & trailer =  $30 \text{ tonnes} = 46 \text{m}^3$ 

• Must retain some residual pellets before delivery otherwise heating stops!









# PELLET TRANSFER TO BOILERS



#### Vacuum pellet transfer

- Internationally preferred method for transfer from bulk store to boiler
- Reduced risk of damage to pellets & plant breakdowns
- Greatest flexibility for managing distance and obstacles

- 25m between pellet store & boilers
- Through walls, around obstructions
- Bridge fire cells with fire protection collars











## VACUUM PELLET TRANSFER

2 x 60mm hoses per boiler & store

Air flow & pellet return From pellet store room to boilers Sucked by boiler

> 1 x 100mm pipe per Flexilo pellet store

From delivery point to pellet store room

Blown by truck







# ENERGY BOXES - CONTAINERISED SYSTEMS

Plant room

container



Automatic

fuel supply

Pellet

boiler/

- ✓ "Energy Box" containerised pellet boiler plant rooms
- All components for pellet boiler system
- ✓ High level cost control
- Consistency of design & delivery Fuel storage
- ✓ Guarantee of workmanship
- ✓ Flexible site placement
- ✓ Modular and expandable







Water & power

connections





ED SYSTEMS



#### ÖkoFEN 128kW Energy Box

- 1 x 20' container (high cube)
- 2.4m x 6m x 2.7mH
- 128kW boiler
- 7 tonnes pellets (35.7 MWh)







#### ÖkoFEN 256kW Energy Box

- 2 x 20' containers (high cube)
- 2 x 2.4m x 6m x 2.7mH
- 256kW boiler
- 21 tonnes pellets (107 MWh)
- Containers can be stacked, side by side or end to end





#### Apricus NZ eco hot water

#### **Containerised pellet storage**

- Dedicated pellet store
- >25m from boilers
- Reduces footprint inside building
- Large capacity for low cost of fuel & optimum resilience

SYPELL

L HEATING PELLET BOILER



OR MAKE A STATEMENT!

ENERGY BOXES

0

ZENN

đ

## MULTI STOREY BUILDINGS

![](_page_20_Picture_1.jpeg)

- Large number of existing buildings with fossil fuel boilers, mainly gas
- Often system designed for high temperature heating water circulation
- Upper storey / rooftop plant rooms
- Limit on structural capacity for heavier loads & space in upper storeys
- Improve energy efficiency & system controls to reduce heat load / lower peaks
- Smaller boilers are easier / possible to get in service lifts and arrange in plant rooms
- Site specific air conveying systems for multi-storey pellet delivery from basement / ground level bulk fuel store
- Separate bulk pellet store, small day fuel store and boilers between multiple storeys of building

![](_page_20_Picture_10.jpeg)

![](_page_20_Picture_11.jpeg)

![](_page_20_Picture_12.jpeg)

![](_page_20_Picture_13.jpeg)

#### MULTI STOREY BUILDINGS

#### Massey University Albany campus

Spanish Mission style buildings with ceramic tile roofs

Library – 6 storeys with gas boilers & HVAC plant room in roof space

Access via service lift & ceiling hatch

RECLAIM

640kW output as 5 x 128kW pellet boilers Moved in to position as 10 x 64kW boilers Bulk pellet store in 20' container at ground Air conveying system moves pellets 7 storeys Small (1-2 tonne) pellet day store in roof

Atrium Building School of Massey University Communication... Library | Te Putanga Ki... ML SSE/ University Press INMS Building, Massey University Google

![](_page_21_Picture_7.jpeg)

#### MULTI STOREY BUILDINGS

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

# HYDRAULIC DESIGN

![](_page_23_Picture_1.jpeg)

#### **Considerations for system design**

- Does specific boiler require a buffer to manage thermal inertia?
- How quickly can the boiler start / restart to respond to thermal load?
  - Slower boiler response / larger peaks = greater requirement for thermal storage buffer
  - Stable vs very variable temperatures generally more suitable & deliver greater efficiency
  - Pellet boilers are always slower to respond than gas boilers
- Hydraulic separation
  - Boiler pump/s separated from main circulation pump in most cases
  - Dosed boiler water separated from potable DHW with HX

![](_page_23_Picture_11.jpeg)

![](_page_23_Picture_12.jpeg)

![](_page_23_Picture_13.jpeg)

![](_page_23_Picture_14.jpeg)

# SYSTEM CONTROLS

![](_page_24_Picture_1.jpeg)

#### **On-board boiler and building management systems**

- Pellet boilers usually include sophisticated complete system controls
- Generally optional
- <u>If used hydraulic design of complete heating system</u> needs to match control logic and design principles
- European heating system design that may not suit NZ climatic conditions, building design, client expectations, installers and maintenance team

- Alternatively boiler controls can be limited to combustion management and target temperature of a point of hydraulic separation (buffer, HX, hydraulic separator)
- All demand management controls can be outside scope of boiler

![](_page_24_Picture_9.jpeg)

![](_page_24_Picture_10.jpeg)

![](_page_24_Picture_11.jpeg)

![](_page_24_Picture_12.jpeg)

# BOILER FLUES

![](_page_25_Picture_1.jpeg)

- Pellet boilers will have fan forced flues with variable speed control fan
- Level of control and associated emissions will vary depending on boiler manufacturer
- Flue does need to clear nearby obstructions to ensure adequate draft and avoid backwash in to windows, ground level,
- Insulated flues
- Multi storey flues practical for low level plant rooms in taller buildings
- Baffling / velocity control systems may be required for taller flues to control draft
- Multiple boilers manifolded in single larger flue

![](_page_25_Picture_9.jpeg)

![](_page_25_Picture_10.jpeg)

![](_page_25_Picture_11.jpeg)

![](_page_25_Picture_12.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

#### Pellet boiler toolkit

V2 February 2021

|                                        | VZ F                | ebruary 2021      |             |                   |                       | _                          |                 |                 |                                                |
|----------------------------------------|---------------------|-------------------|-------------|-------------------|-----------------------|----------------------------|-----------------|-----------------|------------------------------------------------|
|                                        |                     | I                 |             |                   |                       |                            |                 |                 |                                                |
| OkoFEN pellet be                       | oiler maintenar     | nce & service gu  | uidance     | •                 |                       |                            |                 |                 | · · ·                                          |
| Cost per each single OkoFEN boiler     |                     |                   |             |                   | 1                     |                            |                 |                 |                                                |
| Does not include any labour or materia | als for servicing a | ny other compone  | ents of the | system, e.g.      | Ť                     |                            |                 |                 |                                                |
| travel, management oversight, heating  | g system servicing  | and any consum    | ables are n | ot included       |                       |                            |                 |                 |                                                |
|                                        | Boyotoni oortronij  | s and any consum  |             |                   | -                     |                            |                 |                 |                                                |
| NOTE - servicing required after 40 ton | nes nellets or 3.0  |                   | ver sooner  |                   |                       |                            |                 |                 |                                                |
| Number of OkoEEN boilers at site       | A                   | oo nours, whiches | ver sooner  |                   |                       |                            |                 |                 |                                                |
| Total tonnes of nellets for site / yr  |                     | 0.5875 Boi        | iler ənnuəl | servicing factor  |                       |                            |                 |                 |                                                |
| Number of services / boiler / yr       | 1                   | 0.3873 80         |             | servicing factor  |                       |                            |                 |                 |                                                |
| Indiliber of services / boller / yr    | -                   |                   |             |                   | 1                     |                            |                 |                 |                                                |
|                                        |                     | Mark un on Lah    | our cost    |                   | 1                     |                            |                 |                 |                                                |
| Hours per boiler (4 bours suggested)   | Hourly rate         | narts ner         | r hoiler    |                   |                       |                            |                 |                 |                                                |
|                                        |                     | 1 2 ¢             | 480         | Modify any figure | as in vellow to chang |                            |                 |                 |                                                |
| · · · · · · · · · · · · · · · · · · ·  | ý <u>120</u>        | 1.5 9             | -00         | would any light   | es in yellow to chang |                            | J               |                 |                                                |
| STANDARD SITES - DHW NOT CRITICAL      | SERVICE             |                   |             |                   |                       |                            |                 | All replaceable | narts covered under warranty for first 2 years |
| Vears Expected Visits Labour           |                     |                   |             | Total ner boiler  | Total for site        | Total for site over period | 5 vear maintena | nce costs estin | nated                                          |
| 1-2                                    | 1                   | \$ 480 \$         | -           | \$ 480            | \$ 1.920              | \$ 3.840                   | o your maintoin | Years           |                                                |
| 3-5                                    | 1.5                 | \$ 720 \$         | 874         | \$ 1.594          | \$ 6.378              | \$ 19,133                  | \$ 22,973       | 1 to 5          |                                                |
| 5-10                                   | 2                   | \$ 960 \$         | 1.019       | \$ 1,979          | \$ 7,918              | \$ 39 589                  | \$ 39,589       | 5 to 10         |                                                |
| 10-15                                  | 2.5                 | \$ 1200 \$        | 1 423       | \$ 2,623          | \$ 10,492             | \$ 52,461                  | \$ 52,461       | 10 to 15        |                                                |
| 1015                                   | 2.0                 | Average an        | nual maint  | tenance costs for | site over 15 years    | \$ 7.668                   | φ <u>52,101</u> | 10 10 10        |                                                |
|                                        |                     | Average un        |             | Per b             | oiler over 15 years   | \$ 1,917                   |                 |                 |                                                |
|                                        |                     |                   |             |                   | ener over 10 years    | ÷ 1,517                    |                 |                 |                                                |
|                                        |                     |                   |             |                   |                       |                            |                 |                 |                                                |

| SITES WITH DHW AS CRITICAL SERVICE - ONLY SERVICE 1 BOILER PER VISIT |                 |                                                         |        |    |       |    | 2.0              | additional time for repeat visits, i.e. not all boilers can be serviced on same day for redundancy reasor |                |                            |        |                                    |        |          |        |
|----------------------------------------------------------------------|-----------------|---------------------------------------------------------|--------|----|-------|----|------------------|-----------------------------------------------------------------------------------------------------------|----------------|----------------------------|--------|------------------------------------|--------|----------|--------|
| Years                                                                | Expected Visits |                                                         | Labour |    | Parts | То | Total per boiler |                                                                                                           | Total for site | Total for site over period |        | 5 year maintenance costs estimated |        |          | imated |
| 1-2                                                                  | 2               | \$                                                      | 960    | \$ | -     | \$ | 960              | \$                                                                                                        | 3,840          | \$                         | 7,680  |                                    |        | Years    |        |
| 3-5                                                                  | 3               | \$                                                      | 1,440  | \$ | 874   | \$ | 2,314            | \$                                                                                                        | 9,258          | \$                         | 27,773 | \$                                 | 35,453 | 1 to 5   | 65%    |
| 5-10                                                                 | 4               | \$                                                      | 1,920  | \$ | 1,019 | \$ | 2,939            | \$                                                                                                        | 11,758         | \$                         | 58,789 | \$                                 | 58,789 | 5 to 10  |        |
| 10-15                                                                | 5               | \$                                                      | 2,400  | \$ | 1,423 | \$ | 3,823            | \$                                                                                                        | 15,292         | \$                         | 76,461 | \$                                 | 76,461 | 10 to 15 |        |
|                                                                      |                 | Average annual maintenance costs for site over 15 years |        |    |       |    |                  |                                                                                                           |                | \$                         | 11,380 |                                    |        |          |        |

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

Designers and distributors of renewable heating & hot water systems

Marcus Baker

marcus@ecohotwater.co.nz

07 312 3382 - 021 027 50220

www.ecohotwater.co.nz

![](_page_27_Picture_7.jpeg)

![](_page_27_Picture_8.jpeg)

![](_page_27_Picture_9.jpeg)

![](_page_27_Picture_10.jpeg)